Abutment Interface Experiments for Integrated Approaches
Project Information
The inservice performance of many bridges built on the geosynthetic reinforced soil (GRS) integrated bridge system (IBS) indicate the superstructure and approach fill coexist to maintain a smooth bump-free transition without the need to include a traditional approach slab or special pavement system. This project will investigate the interaction between the end of the bridge and a GRS integrated approach. The project will involve a series of laboratory experiments and computer modeling to simulate thermal bridge cycles and measure the resulting passive earth pressure against the GRS integrated approach in an attempt to understand the mechanics of the IBS. In addition, the results of this research can be applied beyond an IBS to integral abutments.
Goals
The key project objectives are:
(1) Define the mechanics of passive earth pressure against a geosynthetic reinforced soil (GRS) integrated approach.
(2) Define the interaction between the superstructure and abutment.
(3) Determine how the thermally induced force from the approach backfill affects the superstructure.
(4) Develop a computer model to simulate the GRS integrated approach for different bridge configurations
(5) Apply the results of this work to the design of bridges with various abutment types (e.g. GRS, integral, etc.).
- Infrastructure
- FY 2002-2022 / Infrastructure / Geotechnical and Hydraulics
AMRP = Annual Modal Research Plan