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SI* (MODERN METRIC) CONVERSION FACTORS
APPROXIMATE CONVERSIONS TO SI UNITS

Symbol When You Know Multiply By To Find Symbol
LENGTH

in inches 25.4 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km

AREA
in2 square inches 645.2 square millimeters mm2

ft2 square feet 0.093 square meters m2

yd2 square yard 0.836 square meters m2

ac acres 0.405 hectares ha
mi2 square miles 2.59 square kilometers km2

VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft3 cubic feet 0.028 cubic meters m3

yd3 cubic yards 0.755 cubic meters m3

NOTE: volumes greater than 1,000 L shall be shown in m3

MASS
ounces 28.35 grams g
pounds 0.454 kilograms kg
short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”)

TEMPERATURE (exact degrees)

°F Fahrenheit
5 (F-32)/9

Celsius °C
or (F-32)/1.8

ILLUMINATION
foot-candles 10.76 lux lx
foot-Lamberts 3.426 candela/m2 cd/m2

FORCE and PRESSURE or STRESS
poundforce 4.45 newtons N
poundforce per square inch 6.89 kilopascals kPa

APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol

LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi

AREA
mm2 square millimeters 0.0016 square inches in2

m2 square meters 10.764 square feet ft2

m2 square meters 1.195 square yards yd2

ha hectares 2.47 acres ac
km2 square kilometers 0.386 square miles mi2

VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m3 cubic meters 35.314 cubic feet ft3

m3 cubic meters 1.307 cubic yards yd3

MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds lb
Mg (or “t”) megagrams (or “metric ton”) 1.103 short tons (2,000 lbs) T

TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F

ILLUMINATION
lx lux 0.0929 foot-candles fc
cd/m2 candela/m2 0.2919 foot-Lamberts fl

FORCE and PRESSURE or STRESS
N newtons 2.225 poundforce lbf
kPa kilopascals 0.145 poundforce per square inch lbfin2

*SI is the symbol for International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.  
(revised March 2003)
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INTRODUCTION

Distracted driving threatens the safety of 
drivers, passengers, and anyone outside  
the vehicle and contributes significantly to 

crashes and near crashes (CNC). In 2022, 3,308 
people were killed, and 289,310 were injured in 
motor vehicle crashes involving distracted drivers.(2) 
Distractions can come from inside the vehicle,  
such as the driver using a cellphone, eating, or 
talking to passengers, and outside the vehicle due  
to pedestrians, cyclists, work zones, billboards,  
and more (figure 1).

Naturalistic driving data captures real-world driver 
behavior and helps researchers understand and 
mitigate the effects of distracted driving. However, the 
wealth of information in large datasets, such as from 
the second Strategic Highway Research Program 
(SHRP2) Naturalistic Driving Study (NDS), must be 
annotated for researchers to study specific driver 
information.(1) Typically, data are manually annotated, 
but manual annotation is prone to human bias, time 
consuming, and costly for large datasets. Moreover, 
manual annotation does not address how drivers 
interact with other road users, roadside objects, and 
infrastructure and how these interactions relate to 
crashes. An automated annotation system would 
address these issues and enable researchers to 
access unprecedented levels of data.

To develop such a system, the Federal Highway 
Administration’s (FHWA) Exploratory Advanced 
Research (EAR) Program supported the project 
Video Analytics for Automatic Annotation of Driver 
Behavior and Driving Situations in Naturalistic Driving 
Data.(3) Led by the Virginia Tech Transportation 
Institute (VTTI), the project’s research team adapted 
and developed tools from computer vision (CV) and 
machine learning (ML) to automatically annotate 
driver behavior, driving context, and interactions 
between the driver and the environment in the 
SHRP2 NDS database.(1) The researchers developed 
and evaluated a series of deep neural network (DNN) 
models—artificial intelligence (AI) that recognizes 
patterns in data—to capture spatial and temporal 
information embedded in the videos. The DNN 
models included AI image recognition models called 
convolutional neural networks (CNNs) and 
transformer-based models that process sequential 
data. The researchers then used CV methods to 

automatically generate annotations and descriptors 
for transportation safety-related events, behavior,  
and driving scenarios.

The study aimed to accomplish the following:

1. Characterize high-level driver behavior inside 
the vehicle (e.g., eating, looking at a cellphone, 
or fixating on an object) by estimating head 
and body pose and gaze direction.

2. Classify the environment and context outside 
of the vehicle (e.g., work zones, intersections, 
and vulnerable road users (VRUs)).

3. Examine interactions and dependencies 
between drivers and the driving environment 
and effectively predict gaze fixation to outside 
objects (e.g., a passing vehicle or a billboard).

4. Demonstrate how the video analytics techniques 
developed apply to human factors research.

In addition to these objectives, the researchers 
wanted to identify locations and situations that may 
pose challenges to advanced driver assistance 
systems (ADAS) or autonomous vehicle navigation 
systems. For example, some ADAS detect driver 
drowsiness but not distraction from secondary 
behaviors (e.g., texting, talking to a passenger).  
If a system can detect driver distraction, it can  
warn the driver to take preventive measures.

The automated annotations developed for this  
study will allow researchers to explore questions 
about driver distractions that are currently beyond 
investigators’ reach. This project showed that  
CV methods can do the following automatically:

• Detect passengers and objects.
• Determine a driver’s head and body pose, 

scene awareness related to safety, and  
gaze direction.

• Characterize the driving environment by 
detecting work zones and intersections.

The algorithms the researchers used can process  
37 different annotations in the SHRP2 NDS data 
dictionary.(1) The researchers were also able to 
correlate a driver’s gaze direction with objects 
detected outside a vehicle. This result has the 
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potential to reveal how drivers behave in various 
traffic situations and contribute to the development  
of robust ADAS systems that can prevent traffic 
crashes. The video analytics tools the researchers 
developed to detect cellphone use, eating, driving 
behavior in work zones, and gazing at signs along 
roadways (particularly billboards) may help human 

factors researchers identify these behaviors and 
develop automated monitoring systems that alert 
drivers to take corrective actions. To ensure the 
public benefitted from these findings, the codes  
and CV models developed for this project were  
all made open source.

© VTTI.
Figure 1. Illustration. Many things in the driving environment compete for a driver’s attention.(4)
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PROJECT OVERVIEW

Because this project addressed multiple  
areas of CV, such as object detection, pose 
estimation, and action recognition, the 

researchers conducted a detailed literature review 
for each project task to identify the best methods and 
associated algorithms. They then used evaluation 
metrics to capture the performance of the algorithms 
they developed. The researchers tested methods for 
detecting driver behaviors, evaluating context and 
tracking objects outside the vehicle, correlating 
driver gaze to external objects, and generating 
high-level video descriptors. Then, they examined 
how the methods from those tests could be applied  
to human factors research for automotive safety.

One challenge the researchers faced was that CV and 
ML techniques often do not generalize well for situations 
other than those for which they were developed. The 
researchers assessed several CV models for their 
ability to analyze naturalistic driving videos and perform 
detection and estimation tasks. Many existing CV 
methods required additional training or fine-tuning  
to perform well with driving-specific datasets.

Most of the researchers’ methods employed transfer 
learning, a field of ML that transfers knowledge from 
one domain application to another. Transfer learning 
uses some of the learning from one database or 
domain to train on a target dataset. The researchers 
used pretrained models and retrained, or fine-tuned, 
them with annotations for the targeted case. CNNs 
contain millions of parameters, and transfer learning 
can fine-tune all of the parameters or a subset. The 
researchers found that fine-tuning the whole network 
performed better than only a subset of parameters.

DATASETS
The research team used several datasets for this 
project depending on the task, ease of access, and 
availability of existing annotations. For images and 
videos, they primarily used SHRP2 NDS, which 
contains data from more than 3,400 drivers with  
32 million miles driven over 5.5 million trips.(1) The 
dataset includes the speed, acceleration, braking, 
turn signal, and distance to other objects in the 
scene for each trip. In the study, four video camera 
views and one wide-angle still camera captured 
images inside and outside the vehicles. The  
SHRP2 NDS dataset contains manual annotations 
for approximately 42,000 CNC and baseline events. 
The researchers for this study performed additional 
annotations for gaze fixation and object tracking.

Other datasets the researchers used focused on head 
pose, driver actions, and pixel-level annotations. The 
researchers also developed a new dataset specifically 
targeted for inside-the-vehicle passenger detection.(5)

ANNOTATING THE DATA
The SHRP2 NDS data dictionary includes more 
than 75 reduction variables describing the driver or 
driving environment attributes.(1) For this project, 
data reductionists manually added many annotations 
for images or events from the datasets, which 
accomplished the following:

• Included attributes such as lighting conditions, 
driving situations, weather conditions, and 
driver impairment.

• Aided the researchers’ understanding of  
the variability of the overall dataset used  
in their investigations.

• Helped the researchers test and evaluate the 
algorithm’s performance under diverse conditions.

Ideally, an algorithm should perform consistently 
regardless of the variability in the data. For example, 
naturalistic driving videos present technical challenges, 
such as variations in illumination inside and outside 
the vehicle, and an object detector should detect 
roadway objects, such as cars and pedestrians, 
regardless of lighting conditions.

This project required the following types of annotations:

• Image-based classification—A single image 
annotated to a specified class (e.g., a city scene 
versus a highway scene or a work zone versus  
a nonwork zone).

• Sequence-based classification—A series of 
images annotated to capture the start time and 
end time of a video sequence to a single class 
(e.g., eating or texting).

• Pixel-based classification—A pixel-level 
understanding of an image is needed, such as  
for object detection and tracking (e.g., a car).

• Attribute-based classification—Ground-truth 
annotations for image-based attributes that 
require additional annotations or measurements 
for the image or a section of the image (e.g.,  
a driver’s three-dimensional (3D) head pose 
angle measurement).
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The following sections summarize the 
investigations the researchers performed  
to achieve the project’s objectives.

DRIVER BEHAVIOR

The researchers identified several factors from the 
driver’s behavior inside the vehicle that could either 
indicate or lead to distractions. They investigated 
methods for detecting the following in naturalistic 
driving videos:

• Body pose estimation.
• Head pose and gaze direction.
• Classification of secondary behavior.
• In-vehicle object detection.
• Passenger detection.

Body Pose Estimation
Identifying a driver’s body pose is important for 
determining the driver’s activity, including engagement 
in secondary behaviors and driver distraction. 
Techniques for determining body pose usually focus 
on locating the positions of keypoints related to 
prominent body joints (e.g., shoulders, elbows, 
wrists, hips, knees, and ankles) and the head.

The researchers tested three deep-learning methods to 
identify the driver’s body pose inside the vehicle using 

the VTTI Machine Learning Pose dataset, which 
provides 80,000 images from 25 participants in 
naturalistic driving and simulated naturalistic driving 
conditions.(6) Some drivers in the videos performed 
secondary tasks while driving. This study used 
approximately 5,500 images from the dataset 
comprising 8 different action classes, including eating 
with the right hand while the left hand is on the steering 
wheel, talking on the phone with the right hand against 
the ear while the left hand is on the steering wheel, 
driving with both hands on the steering wheel, etc.

Of the three models they tested, the researchers 
obtained the best results with HRNet, which uses a 
top-down approach to first detect people and then 
estimate keypoint types and locations.(7) The model 
most reliably detected the driver’s right shoulder  
and right elbow. The driver’s left wrist and left elbow 
were not identified consistently, which was expected 
since those joints are often blocked from the 
camera’s view because the camera was mounted 
near the rearview mirror.

Across the eight action classes, several activity types 
had recall values above 90 percent, including eating, 
interacting with the center stack (the portion of  
the dashboard where navigation, entertainment,  
and climate controls are often located), texting, 
one-handed driving, and two-handed driving (figure 2).  
Drinking and talking on a cellphone had recall values 
between 80 and 90 percent. The lowest recall value, 

PROJECT METHODOLOGY

Source: FHWA.
Figure 2. Graph. Combined mean recall values for all keypoints by action classes.
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Secondary 
Task Name

Head 
Movement

Hand 
Movement

Mouth 
Movement

At Least 
One Hand 
Off Wheel

Body Pose 
Off Normal

Head Pose 
Off Normal

Hand- 
to-Face 
Distance

Presence  
of Object

Cellphone, 
talking Maybe No Yes Yes No No Close Yes

Adjusting 
radio Yes Yes No Yes Maybe Maybe Far No

Applying 
makeup Maybe Yes Maybe Yes Maybe Maybe Close Yes

Eating with 
utensils Maybe Yes Yes Yes No No Close Yes

Looking at 
pedestrian Yes No No No No Yes N/A No

approximately 80 percent, occurred for driver 
interactions with the visor.

Head Pose and Gaze Direction
Understanding driver gaze behavior is essential 
because CNC events increase significantly when 
drivers take their eyes off the road. According to 
the National Highway Traffic Safety Administration, 
drivers taking their eyes off the road for 5 s at  
55 mph is equivalent to driving the length of a 
football field with their eyes closed.(8) The ability  
to predict gaze fixation may help ADAS systems 
warn distracted drivers and predict the takeover  
time in partially automated vehicles.

The researchers used an Oak Ridge National 
Laboratory dataset containing videos of drivers’ 
faces and ground-truth head pose measurements.(9)  
Ten participants were asked to look at 16 different 
locations inside a stationary vehicle. Later, these 
same participants performed the same tasks while 
driving. Two cameras recorded the scenarios, 
and each participant also wore a head-mounted 
gyroscope that collected data for head-pose angles.

To predict gaze location, the researchers developed 
two deep-learning algorithms to estimate a driver’s 
head pose from in-vehicle camera images.(10) One 
algorithm used a single image-based CNN model. The 
second used a recurrent neural network model—a 
type of AI neural network that uses sequential or  
time-series data—to study the temporal patterns of  
the 3D head pose angles (roll, pitch, and yaw) and 
predict a driver’s gaze locations, such as forward, 
rearview mirror, left mirror, radio, speedometer, etc.

The temporal model performed better overall than the 
CNN model for predicting a gaze fixation target. To the 
best of the researchers’ knowledge, this project is the 
first to use large-scale naturalistic data to study the 
gaze locations of drivers. The implications go beyond 
safety events to facilitate continuous data processing. 
The algorithm processed individual images at  
375 frames per second. At that rate, processing all 
7.7 billion frames in the SHRP2 dataset would take 
less than 250 d on a single graphics processing unit.(1)

Classification of Secondary Behaviors
Secondary behaviors while driving are distracting by 
definition because they take away from the primary 
task of driving. Understanding the role each secondary 
task plays in distraction is problematic because 
these tasks overlap with the primary task. In this 
investigation, the researchers introduced a set of visual 
attributes that are semantically explainable to humans 
and easily detectable by a machine. Specifically, the 
researchers looked at driver behavior inside a vehicle 
by representing secondary behaviors using a method 
based on a visual dictionary. A visual dictionary of 
human action (VDHA) is a collection of the temporal 
sequence of human behaviors and interactions 
between objects and body parts captured in a systemic 
way to uniquely represent any human action.

Table 1 shows how microactions by the driver (i.e., 
movement of the head, hand, and mouth), spatial 
relations between parts of the driver’s body (i.e.,  
body pose, head pose, and hand-to-face distance), 
and the driver’s interactions with the surroundings  
(i.e., at least one hand off the wheel and the 
presence of an object) can uniquely represent five 

N/A = not applicable.

Table 1. Examples of secondary behavior descriptions using a visual dictionary.

EAR PROGRAM —USING VIDEO ANALYTICS TO AUTOMATICALLY ANNOTATE DRIVER BEHAVIOR AND CONTEXT IN 
NATURALISTIC DRIVING DATA—RESEARCH SUMMARY REPORT

  |  5



secondary tasks. “Maybe” indicates that the task 
could be performed whether or not the dictionary 
attribute was present. For example, a driver could 
adjust the radio with or without the head being away 
from the forward view (off normal).
The researchers used the visual dictionary elements 
to encode 52 secondary behaviors chosen by manual 
annotation from the SHRP2 dataset.(1) Next, they 
fine-tuned four existing CNN action recognition models 
to identify drivers’ secondary activities. The research 
team then demonstrated how each of the secondary 
behaviors can be automatically processed from 
videos using CV. The visual dictionary’s associative 
nature made concurrent behavior modeling possible 
when a driver is involved in multiple actions at the 
same time. The CV methods employed in this study 
could be used for further study of drivers’ actions  
and visual dictionary elements.

In-Vehicle Object Detection
For this task, the researchers chose videos  
from driver-facing cameras to detect and identify 
in-vehicle objects that could distract the driver. 
Using a third-party dataset with cab-facing images 
manually annotated for objects visible inside the 
vehicle, the researchers worked with 5,021 images 
with approximately the same distribution of object 
classes. The dataset was assigned 25 object 
classes with labels such as “grocery bag,” “dog,” 
“backpack,” “bottle,” and “phone.”

The researchers used a CNN object detector that 
assigned class labels and bounding boxes to objects 
detected in an image. To evaluate the network’s 
performance, they computed the mean average 
precision (mAP) and mean average recall (mAR) 
for each object the network detected.(11) All classes 
combined had mAP and mAR values of 38.4 and 
45.5 percent, respectively. The highest precision 
and recall values were for the object categories 
“face,” “person,” and “logo,” which may be a result 
of emphasizing the face and person classes during 
the network’s pretraining. The “phone” class had 
mAP and mAR values of 56.0 and 52.8 percent, 
respectively. “Food” and “bottle” classes obtained 
lower values, perhaps because the driver’s hand 
partially blocked these objects from view.

Passenger Detection
By developing a system to detect passengers 
in naturalistic driving videos automatically, the 
researchers aimed to facilitate studies related to 
passenger-driver interactions and vehicle safety.  
For this task, they used two SHRP2 datasets 
containing in-vehicle images and annotations for 
three object categories: driver, front-seat passenger, 
and back-seat passenger.(1) For privacy, the 
SHRP2 videos have blurred facial images, making 
automated analysis more difficult. The researchers 
found that standard person-detection methods 
often failed. However, a passenger’s presence and 
location in a vehicle tend to be consistent throughout 
a video, which helped the researchers automatically 
detect vehicle occupants.

The occupant-detection algorithm for this task used a 
two-step method. First, a CNN-based object detector 
drew a bounding box around each person detected 
in the image. Second, the system assigned each 
person to one of three subclasses—driver, front-seat 
passenger, or back seat passenger—based on their 
locations in the vehicle and the sizes of the bounding 
boxes from step one. Figure 3 shows the process for 
detecting individuals in the vehicle.

Two different test sets for occupant detection resulted in 
94.5- and 98.1-percent accuracies. One of the SHRP2 
test sets for the classification of occupants resulted in  
a 99.5-percent accuracy for drivers, 97.3-percent for 
front-seat passengers, and 94.3-percent for back-seat  
passengers. In the second SHRP2 test set, all drivers  
and front-seat passengers were classified correctly, 
and the classification accuracy of back-seat 
passengers was 97.7-percent. The researchers also 
analyzed the system’s performance on day and night 
images for front-seat passengers. The scores were 
slightly higher for daytime images (98.5-percent 
accuracy) than nighttime images (96.7 percent).

This system automatically detected and classified 
occupants in vehicles from cabin images. The 
researchers expect this work will facilitate new 
research involving passengers and in-vehicle 
occupants, including interactions between drivers  
and passengers in studies related to safety. The 
model and image annotations the researchers  
used are available as open-source resources.(12)
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CONTEXT OUTSIDE THE VEHICLE
In addition to investigating driver behavior, context, 
and distractions inside the vehicle, the researchers 
developed methods to automatically detect work 
zones, the driving environment, and objects outside 
the vehicle. The researchers used semantic image 
segmentation, where a class label is assigned to 
every pixel in an image. Relevant classes in these 
systems were included for processing roadway 
images, such as “pedestrian,” “traffic sign,” and “car.”

The main difference between object or instance 
segmentation and semantic image segmentation is  
that object detection systems assign a bounding box  
to each object identified in an image, but semantic 
segmentation systems identify similar objects as 
belonging to the same class. For example, in semantic 
segmentation, all cars in an image might be labeled 
“car” even if the pixels belong to different cars (figure 4).

The researchers evaluated several publicly available, 
state-of-the-art image segmentation systems, 
emphasizing systems trained using the CityScapes 
dataset.(14) CityScapes is a large dataset with urban 
scenarios that has been annotated for classes of  

interest to the transportation community. The 
researchers tested the segmentation systems’ 
performance on a new third-party dataset. Two  
of the segmentation models were virtually tied for  
best performance for daytime images. For all of  
the models, the daytime image performance was 
better than nighttime image performance.

The researchers conducted investigations into 
methods for detecting the following:

• Work zones and related traffic-control objects.

• Driving environment based on the type of 
roadway, intersections, and lane markings.

• Billboards.

• Traffic density estimations.

• Object tracking outside of a vehicle.

• VRUs.

For these investigations, the researchers used 
videos from forward-looking cameras in vehicles  
and adapted recently developed CV models to 
automatically determine the external context, such  
as traffic density and the presence of work zones.

Source: FHWA.
Figure 3. Flowchart. Processing pipeline for detecting vehicle occupants.(13)
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© 2020 CityScapes Dataset. Modifications by FHWA so color alone is not used to convey information.

A. Semantic segmentation.

© 2020 CityScapes Dataset. Modifications by FHWA so color alone is not used to convey information.

B. Instance segmentation.

Figure 4. Illustration. Semantic segmentation versus instance segmentation.(14,15)
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Work Zones
Work zones pose unique and challenging scenarios 
for drivers because they introduce temporary, possibly 
unexpected, changes to the roadway. Even if drivers 
or automated driving systems receive warnings about 
work zones, these areas remain high risk because the 
distribution of construction-related objects on the road 
can change. Detecting and localizing objects in work 
zones is imperative for developing effective driver 
safety assistance systems.

For this task, the researchers aimed to detect  
work zones in naturalistic driving images to identify 

potential challenges to ADAS or autonomous vehicle 
navigation systems. They used a new dataset 
called VTTI-WZDB2020 derived from a large-scale 
naturalistic study of more than 1,000 truck drivers  
over millions of miles of driving.(16) The dataset 
consists of work zone and nonwork zone scenes in 
various conditions, a variety of roadway conditions 
(e.g., highway, driveway, rural, and urban), and a 
range of weather and illumination conditions (figure 5). 
Manual annotations helped the researchers choose 
events in work zones and nonwork zones, including 
CNC, hard-braking, and swerving events.

© 2011–2014 VTTI. A. Daytime work zone.

© 2011–2014 VTTI. B. Work zone in wet conditions.

Figure 5. Photos. Work zone scenes from a naturalistic driving dataset.(17)
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The researchers manually annotated images they 
selected from the dataset to identify work zone 
objects, such as drums, cones, barricades, signs, 
barriers, construction equipment, people, and 
trailers. The final dataset for the task consisted  
of images from work zones and nonwork zones. 
Most of the work zone images included two to  
seven objects in each image.

The researchers combined image segmentation  
with object detection and used two ML models  
to detect work zones.(18) The first model used  
whole-image classification to determine if an 
image showed a work zone. This system correctly 
classified work zone scenes for 95 percent of the 
test cases and nonwork zones for 97 percent of the 
test cases. This test set used 1,576 images. Of the 
1,004 nonwork zone images in the set, only 31 were 
misclassified as work zones. For the 572 work zone 
images, 28 were misclassified as nonwork zones.

The second model used image segmentation to 
detect and localize work zone objects on the same 
set of 1,576 images. Using this model, only 32 work 
zones were misclassified. Through saliency analysis 
(i.e., attention of the neural network while making  
a prediction), the researchers determined that  
some work zone objects were not contributing to  
the classification, and some nonwork zone objects  
(e.g., traffic signs and vehicle taillights) were 
being detected as a work zone. More examples 
with diverse work zone objects and using prior 
information could help the network correctly classify 
more scenarios. 

The system learned to emphasize objects that 
commonly appear in work zones (e.g., cones, 
drums, and signs) even though this training 
procedure provided no explicit information related 
to those objects. The model also picked up various 
work zone objects in different lighting conditions. 
When objects were close to each other, the model 
sometimes had difficulty segmenting the objects. 
Reflections of work zone objects on the road during 
rainfall also caused the model to detect objects 
incorrectly. Adding more data points and exploiting 
the spatial distribution of work zone objects would 
help reduce the number of false detections.

Scene Perception
Understanding the driving environment, including 
roadway features and the presence of other 

vehicles, is crucial to transportation safety since 
drivers must maneuver according to the scene 
and react to changes. Therefore, the researchers 
investigated systems to evaluate the scene outside 
the vehicle.

According to FHWA, more than 50 percent of 
automotive crashes involving injury or death 
occur at or near intersections.(19) The researchers 
explored CV methods for detecting and classifying 
intersections versus nonintersections; day versus 
night; and urban, residential, or interstate/highway 
environments. They manually selected and labeled 
video frames from de-identified video files in the 
SHRP2 dataset that contained intersections and 
those that did not.(1) The annotated subset was  
used to train the system.

The system correctly classified intersections  
97 percent of the time by finding indicators such 
as traffic lights, stop signs, and lines on the road 
surface.(20) The absence of these indicators helped 
the network determine no intersection was present. 
The network was less conclusive for identifying  
the driving environment. It correctly classified 
interstate/highway environments 83 percent of  
the time; the lower overall accuracy resulted  
from misclassification of urban and residential 
driving environments.

The researchers gained two primary insights from 
this experiment. First, the system they used was 
computationally light with a fast inference time, and 
a similar system could be used in active and passive 
driver assistance systems. Second, systems based 
on deep-learning models need careful attention 
during the design phase and rigorous testing before 
they can be used in the real world.

Another aspect of the scene perception that the 
researchers worked with was estimating traffic density 
near a vehicle. Using views from forward-facing  
cameras and an image segmentation system that 
detects individual vehicles, the researchers identified 
a trapezoid-shaped region of interest in front of the 
primary vehicle corresponding to the rectangular 
region on the road surface (assuming the surface is 
flat). Then they counted the vehicles that overlapped 
the region of interest partially or entirely and computed 
the traffic density by dividing the number of vehicles 
detected by the estimated road surface area.
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Next, the researchers categorized the traffic  
into density classes:

• Free flow with very little traffic.
• Flow with light restrictions.
• Stable flow but with more restrictions  

on speed and maneuverability.
• Unstable flow with severe restrictions  

or stoppages.
The image segmentation approach allowed the 
researchers to manually adjust the traffic density 
classification without having to retrain a CNN model. 
The system can be tailored to adapt to pedestrian or 
bicycle traffic density. A disadvantage of the image 
segmentation approach is that nearby vehicles 
block more distant vehicles from view, restricting 
the system’s ability to estimate density from a single 
image. Using a sequence of frames and refining 
density estimates over time might overcome this issue.

The researchers also investigated the performance 
of lane-detection algorithms. For this experiment, 
the researchers annotated 700 images with lane 
lines and tested three lane-detection algorithms 
to determine how well the algorithms could detect 
lanes under different operating conditions. The 
results revealed that lane detection is one of the 
most challenging issues. Most of the algorithms 
successfully detected solid lines; however, many 
struggled to detect dashed lines and lines that  
were at least two lanes away from the vehicle.  
The best algorithm achieved a recall value of 0.42.

Object Detection and Tracking
Using SHRP2 NDS and other third-party NDS data, 
the researchers annotated approximately 4,000 
images.(1) They used transfer learning to train a 
new CNN-based model to use with the SHRP2 
data to detect and track objects in a scene.(11) The 
model performed particularly well in identifying 
pedestrians and cyclists. The researchers analyzed 
the performance of the object detectors in different 
conditions. The model performed well for daytime 
images and images with less occlusion. (An object 
labeled as occluded is more than 50 percent 
blocked from the camera’s view.)

As part of the object detection task, the researchers 
developed an algorithm to detect billboards in an 
image.(11) Using data from a third-party NDS, the  
researchers selected 700 images that had been 
annotated for billboards. To the researchers’ 

knowledge, this is the first work to target billboard 
detection in NDS videos. Identifying billboards in 
naturalistic driving data could help human factors 
researchers study the impact of billboards on 
distracted driving, as discussed in the human  
factors applications section of this summary.

Along with object detection, the researchers 
examined object tracking, a field of CV research 
focused on tracking an object over time. As the 
number of objects in a scene increases, so does 
the complexity of the task. An ideal object-tracking 
algorithm in a driving scenario needs to track all the 
objects simultaneously, regardless of the challenges 
posed by differences in categories, size, appearance, 
trajectories, and movement speed. A new CV field 
called multiobject tracking (MOT) addresses this 
challenge. An object detector finds all the objects in 
a scene, and then the tracking algorithm assigns a 
unique identification (ID) number to each object in 
a video sequence, similar to the image in figure 6 
captured from a closed-circuit television camera. The 
researchers used these models for multiple classes, 
including VRUs.

© Multiple Object Tracking Benchmark. Modifications by FHWA.

Figure 6. Photo. MOT assigns a unique ID 
number to each object in a scene.(21)
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The researchers tested several MOT algorithms for 
low-quality, high-compression videos similar to the 
videos in the SHRP2 NDS.(1) Using 184 events from 
the SHRP2 NDS that included object categories 
such as cars, trucks, pedestrians, stop signs, and 
traffic signals, the researchers used the object 
detector they developed and ran the MOT method.(11)  
The algorithm developed by the researchers 
performed much better than the other models.

INTERACTIONS BETWEEN DRIVER 
AND DRIVING ENVIRONMENT
To investigate the high-level goal of analyzing 
interactions between drivers and the driving 
environment, the researchers examined drivers’ 
head and eye movements and their gaze directions. 
Previous studies by Yarbus demonstrated that eye 
movements are task dependent.(22) Other studies 
have shown correlations between head and eye 
movements and driver drowsiness and between 
recurring gaze patterns and driver activities, which 
may predict vehicle maneuvers.(23,24) To illustrate  
how event-correlation models can reflect a driver’s 
attention and actions relative to driving situations, 
the researchers examined the direction of a driver’s 

gaze during common driving events and regarding 
different objects outside the vehicle. The researchers 
also performed safety analysis based on drivers’ 
gaze fixation.

Event Correlation and Object Saliency
Using videos from the VTTI Head Pose Validation 
(HPV) dataset—which provides information about 
the yaw and pitch angles of the driver’s head—the 
researchers categorized the driver’s gaze direction 
as central, left, right, or left or right outside the 
camera’s field of view (FOV), as shown in figure 7.(25) 
Next, they manually examined 23 short HPV video 
segments with 1 event per sample for left and right 
turns at stop signs and left and right turns at traffic 
lights. In a separate step, the researchers located 
the salient object closest to the fixation point in  
the image.

Figure 7 shows a driver’s gaze direction zones. The 
results showed the highest concentrations of gaze 
direction toward the turn directions (e.g., gazing to 
the right for a right turn). Although drivers focused 
sharply on stop signs, their gaze often wandered  
to other objects once they recognized the stop  
sign. Other vehicles received more gaze fixation  

© 2012–2013 VTTI.
Figure 7. Image. Driver gaze direction zones.(26)
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than traffic lights when drivers were making right 
turns at signalized intersections. The researchers 
also looked at merge events and lane changes  
and found that driver gaze direction was more 
evenly distributed.

This work is the first to consider the development  
of a correlation model that relates to driver behavior 
with automatically detected salient objects and  
events.(27) Correlations between gaze direction, salient 
objects, and the driving scenario can potentially reveal 
how drivers behave in different traffic situations and 
may help improve automated safety-improvement 
systems by predicting driver behavior.

Gaze Fixation to Outside Objects
A driver’s gaze direction is an essential indicator  
of attention, which can impact traffic safety. 
Therefore, the researchers considered the gaze 
direction of drivers in several scenarios to support 
the event correlation model and developed a new 
algorithm to predict a driver’s point of gaze (PoG)  
to outside objects.(28)

For this task, the researchers automatically 
analyzed images from a camera aimed at the driver 
to obtain the driver’s gaze direction. They mapped 
PoG positions to the vehicle’s frame of reference 
to identify objects outside the vehicle as possible 
fixation points. In driving situations, short sequences 
of fixations occur in patterns depending on the 
scenario, such as making a turn at an intersection. 
Based on the estimated gaze direction of the driver, 
the researchers’ system selected the closest object 
in an image (within 20 pixels) from the forward-facing  
camera (dimension: 480 by 360 pixels). The system 
results proved highly accurate, suggesting that 
the research team’s approach, in many cases, can 
automatically determine objects outside a vehicle 
that have attracted a driver’s attention.

In addition to testing drivers’ PoG on static objects, 
the researchers considered temporal sequences of 
fixation points by plotting eye movement, such as 
when a driver approaches a signalized intersection 
and must repeatedly give attention to the traffic 
lights to detect signal changes.

Safety Analysis
A driver must look at the driving scene and safely 
maneuver the vehicle. Predicting what object or 

event outside the vehicle will distract the driver  
is challenging. One possible way to predict 
distractions is by understanding which objects in 
a scene attract attention; the visual saliency of an 
object helps researchers predict locations that can 
attract driver attention. For this investigation, the 
researchers set out to automatically characterize 
objects that may attract attention and understand 
gaze fixation patterns.

The SHRP2 NDS dataset contains approximately 
9,000 CNC events and approximately 32,000 
baseline driving events that have been manually 
annotated.(1) The annotations include drivers’ 
gaze location for all events and a frame-by-frame 
annotation of a driver’s gaze at the level of the  
rear-view mirror, forward, left mirror, right 
windshield, left windshield, etc. The researchers 
selected 666 CNC events and 446 baseline events  
in which the driver’s gaze was directed through  
the right windshield and fixed for 2–5 s.

The annotations focused on the following:

• The type of object fixated on (e.g., car, 
pedestrian, billboard).

• The vehicle’s motion (e.g., traveling straight, 
changing lanes).

• The motion of the object fixated on (e.g., 
stationary on the roadside, moving right to left).

• The driving environment (e.g., city, 
intersection, highway).

• The time the gaze fixation started and ended.
• The driver’s head and eye movements (e.g., 

whether the driver had any visible head 
movement or only used eye movements).

The researchers performed additional manual 
annotations on the gaze fixation events using both 
the forward-facing video and the driver’s face video, 
resulting in 617 CNC events and 410 baseline 
events. Statistical analysis on both sets of events 
revealed that drivers’ gazes were more firmly fixed 
on roadway objects and their movements during 
CNC events and more on roadside or stationary 
objects during baseline events. In other words, gaze 
fixation on dynamic objects contributes more to 
safety-critical events than static roadside objects. 
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Some of the specific findings are as follows:

• CNC events showed driver head movement  
73 percent of the time compared to 66 percent 
for baseline events.

• CNC events had an average object gaze 
fixation time 0.3 s higher than baseline events.

• Drivers spent more time perceiving information 
on billboards and at intersections during  
CNC events.

• Drivers in baseline events were most often 
looking at stationary objects (89 percent  
of the time). In CNC events, the driver 
was mostly looking at the movement of 
other roadway objects, such as cars and 
pedestrians, and only at stationary objects  
44 percent of the time.

• Driver distraction for all events was 
exceptionally high when drivers were  
turning, negotiating with VRUs, and 
maneuvering to avoid objects.

HUMAN FACTORS RESEARCH 
APPLICATIONS
One of the research team’s objectives was to 
demonstrate how the video analytics methods from 
this project can help human factors researchers 
address automotive safety questions in new ways. 
The researchers looked at four driver behaviors 
detrimental to automotive safety: using a cellphone, 
eating, driving in work zones, and gazing at signs 
along roadways (particularly billboards). Automated 
monitoring systems that detect these behaviors and 
alert drivers to take corrective actions, such as 
braking or steering, would improve safety by 
preventing accidents. The researchers propose that 
these four behaviors could be automatically 
detected using CV systems.

This study demonstrated that CV techniques can 
automatically detect cellphone use while driving in 
some situations. The researchers developed a 
classifier to detect secondary behavior, including 
using a cellphone (figure 8). In-vehicle object 
detection experiments resulted in 56.0 percent  
mAP and 52.8 percent mAR detecting cellphones.  

More work is needed to improve performance, but 
these results indicate that cellphones can be detected 
in many driving situations in naturalistic data.

National crash statistics on eating while driving are not 
reported; however, eating while driving involves a 
combination of one or more distractions, such as 
unwrapping food packaging and holding the food with 
one hand while driving. A combination of the methods 
used in this study can provide a detailed understanding 
of eating behavior while driving, what the driver was 
eating and for how long, how long the driver’s hands 
were off the steering wheel, and other factors. The 
secondary behavior algorithm the researchers used to 
identify driver behavior inside the vehicle can be used 
to study the time sequence when a driver is eating.(29) 

In-vehicle object detection can detect food and bottles 
in many driving situations, and body pose estimations 
can help researchers understand the driver’s control  
of the vehicle.

In 2022, an estimated 96,000 crashes occurred  
in work zones, resulting in 37,00 injuries and  
891 fatalities.(30) Of these fatalities, 136 involved  
a pedestrian or construction worker. Researchers 
need better information about the reasons for these 
crashes to develop effective countermeasures to 

© 2012 VTTI. Modifications by FHWA.

Figure 8. Photo. VDHA helps identify secondary 
behaviors such as using a cellphone.
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reduce work zone crashes. The researchers in  
this study used a whole-image classification system 
and a segmentation-based system to automatically 
detect work zones using forward looking video 
cameras. The ability to detect work zones with these 
systems was relatively high, but combining these 
approaches may achieve even better results. In 
addition, human factors researchers can use the 
gaze detection algorithm from this study to examine 
driver distraction patterns. The gaze fixation and 
gaze saliency-based methods can also be used  
to understand drivers’ work zone perception and 
their focus on certain roadway elements. Lastly, 
kinematics data can show how drivers navigate  
a work zone by changing lanes, slowing down,  
or other measures.

Research on the correlation between billboards and 
increased crash risk has been inconclusive. One 

problem is that billboards vary in how they capture  
a driver’s attention. Oviedo-Trespalacios et al. 
determined that changeable billboards attract more 
attention than static billboards, and billboards closest 
to the road attract the most attention.(31) The 
billboard’s content also affects the driver’s attention.

The researchers in this study detected outside 
objects, including billboards, in a scene using 
instance segmentation and object detection methods. 
In addition, the researchers determined the driver’s 
gaze behavior by processing driver-facing videos 
from naturalistic driving datasets. The gaze saliency 
and gaze fixation methods the researchers developed 
can be used to determine how long a driver looks  
at a billboard. Together, these tools can help human 
factors researchers study the effects of billboards  
on transportation safety.
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CONCLUSION

This study aimed to assess the capability of 
automated systems to analyze naturalistic 
driving videos and produce annotations and 

descriptors for events, behavior, and driving scenarios 
related to transportation safety. The research team 
adapted and developed CV and ML techniques to 
automatically produce annotations that will allow 
investigators to explore interactions between drivers 
and other road users, road infrastructure, and 
roadside objects. Automatically producing annotations 
reduces the number of costly and labor-intensive 
manual annotations needed for large datasets such 
as the SHRP2 NDS.(1)

The researchers concluded that CV methods can 
perform several automated tasks, including detecting 
passengers and objects, estimating the driver’s head 
and body pose, detecting driver actions related to 
safety, and estimating gaze direction inside the 
vehicle. Outside the vehicle, CV methods also 
detected work zones and intersections. Objects 
outside the vehicle were detected and associated 
with the driver’s gaze direction. When analyzed over 
time, event correlation models can be developed  
that reflect patterns in a driver’s attention and 
actions relative to driving situations.

This project showed that CV-based approaches can 
efficiently process continuous video data to identify 
and retrieve key annotations, such as in-vehicle object 

and passenger detection, secondary behaviors, and 
more. The algorithm the researchers developed can 
address 37 annotations from the SHRP2 reduction 
dictionary. The researchers developed new models  
to address the problems of action detection and 
behavior classification in the context of driving. This 
work is the first to explicitly train an ML model to 
detect these behaviors.

The researchers also adapted CV models to 
automatically determine external context, such as 
traffic density and the presence of work zones. The 
project resulted in multiple open-source codebases 
and CV models for the SHRP2 NDS.(1)

This study is the first to consider the development  
of a correlation model that relates driver behavior 
with automatically detected salient objects (e.g., 
billboards) and events (e.g., car cutting into a 
driver’s lane). The correlations between driver  
gaze fixation and salient objects determined by the 
research have the potential to reveal how drivers 
behave in various traffic situations and aid the 
development of ADAS systems that help prevent 
accidents in highly automated vehicles.

Human factors researchers could use the video 
analytics methods from this project to approach 
automotive safety research in new ways.
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Getting Involved With the EAR Program
To take advantage of a broad variety of scientific and engineering discoveries, the  
EAR Program involves both traditional stakeholders (State department of transportation 
researchers, University Transportation Center researchers, and Transportation 
Research Board committee and panel members) and nontraditional stakeholders 
(investigators from private industry, related disciplines in academia, and research 
programs in other countries) throughout the research process.

Learn More
For more information, see the EAR Program website at https://highways.dot.gov/research/
research-programs/exploratory-advanced-research/exploratory-advanced-research-
overview. The site features information on research solicitations, updates on ongoing 
research, links to published materials, summaries of past EAR Program events, and 
details on upcoming events.

https://highways.dot.gov/research/research-programs/exploratory-advanced-research/exploratory-advanced-research-overview
https://highways.dot.gov/research/research-programs/exploratory-advanced-research/exploratory-advanced-research-overview
https://highways.dot.gov/research/research-programs/exploratory-advanced-research/exploratory-advanced-research-overview


EAR Program Results
As a proponent of applying ideas across traditional research fields  
to stimulate new problem-solving approaches, the EAR Program 
strives to develop partnerships with the public and private sector. 
The program bridges basic research (e.g., academic work funded  
by National Science Foundation grants) and applied research  
(e.g., studies funded by State DOTs). In addition to sponsoring 
projects that advance the development of highway infrastructure 
and operations, the EAR Program is committed to promoting  
cross-fertilization with other technical fields, furthering promising 
lines of research and deepening vital research capacity.
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