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FOREWORD

The dynamic modulus, |E*|, is a fundamental property that defines the strain response
characteristics of asphalt concrete mixtures as a function of loading rate and temperature. The
significance of this material property is threefold. First, it is one of the primary material property
inputs in the Mechanistic Empirical Pavement Design Guide (MEPDG) and software developed
by National Cooperative Highway Research Program Project 1-37A.1-» MEPDG uses a master
curve and time-temperature shift factors in its internal modulus computation.’ In MEPDG, the
master curve is constructed using a hierarchical structure of inputs ranging from estimates
based on mixture volumetrics and binder tests to full-scale mixture |E*| testing. |E*| is one

of the primary properties measured in the Asphalt Mixture Performance Test protocol that
complements the volumetric mix design.®* Additionally, it is one of the fundamental linear
viscoelastic material properties that can be used in advanced pavement response models based
on viscoelasticity.

Given the significance of |E*|, this study evaluated existing prediction models, developed new
models, and populated the Long-Term Pavement Performance database to provide a valuable
data source for the pavement community. Supplementing the full suite of material properties,
performance history, traffic, and climate with |E*| estimates will be advantageous in conducting
MEPDG calibration, validation, and implementation.

Jorge E. Pagan-Ortiz
Director, Office of Infrastructure
Research and Development
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in the interest of information exchange. The U.S. Government assumes no liability for the use of
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SI* (MODERN METRIC) CONVERSION FACTORS

APPROXIMATE CONVERSIONS TO SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
in inches 254 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in’ square inches 645.2 square millimeters mm?
ft? square feet 0.093 square meters m?
yd? square yard 0.836 square meters m?
ac acres 0.405 hectares ha
mi? square miles 2.59 square kilometers km?
VOLUME
fl oz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters L
ft cubic feet 0.028 cubic meters m®
yd® cubic yards 0.765 cubic meters m®
NOTE: volumes greater than 1000 L shall be shown in m®
MASS
oz ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5 (F-32)/9 Celsius "©
or (F-32)/1.8
ILLUMINATION
fc foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m? cd/m?
FORCE and PRESSURE or STRESS
Ibf poundforce 4.45 newtons N
Ibf/in? poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM SI UNITS
Symbol When You Know Multiply By To Find Symbol
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm? square millimeters 0.0016 square inches in’
m? square meters 10.764 square feet ft?
m? square meters 1.195 square yards yd?
ha hectares 2.47 acres ac
km? square kilometers 0.386 square miles mi
VOLUME
mL milliliters 0.034 fluid ounces fl oz
L liters 0.264 gallons gal
m® cubic meters 35.314 cubic feet ft2
m? cubic meters 1.307 cubic yards yd®
MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds Ib
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
°C Celsius 1.8C+32 Fahrenheit °F
ILLUMINATION
Ix lux 0.0929 foot-candles fc
cd/m? candela/m? 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibf/in?

*Sl is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.
(Revised March 2003)
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EXECUTIVE SUMMARY

The dynamic modulus, |E*|, is a fundamental property that defines the stiffness characteristics of
hot mix asphalt (HMA) mixtures as a function of loading rate and temperature. Given the
significance of |E*| in pavement engineering, this project was undertaken to provide the Long-
Term Pavement Performance (LTPP) database with |[E*| estimates using material properties
currently available for LTPP test sections. In this report, existing models used to estimate |E*|
values and additional models that have been developed based on the use of artificial neural
networks (ANNSs) were evaluated. Using the results of the model evaluation, the research team
developed a model selection hierarchy and populated the LTPP database with |E*| estimates at
five temperatures and six frequencies. It also developed shift factors and sigmodial functions that
can be used to construct mastercurves.

The seven models identified at the outset of this project as potentially suitable for the task at
hand include the following:

1. Original Witczak equation (National Cooperative Highway Research Program
(NCHRP) 1-37A).%)

2. Modified Witczack dynamic shear (|G*|) equation (NCHRP 1-4OD).(5 )

3. Hirsch model.®

4. Law of mixtures parallel model.”’

5. Resilient modulus (Mk)-based ANN model.
6. Viscosity-based ANN model.
7. Binding shear modulus (|G *|)-based ANN model.

The existing predictive models (1—4 above) are collectively referred to in this report as
“closed-form models.” Specific comparisons are drawn regarding their forms and required
input parameters.

An extensive independent database was required to develop the ANN models and to fairly assess
the predictive capabilities of each model in the list of possible models. At the outset of the
project, the most comprehensive material database available was compiled through the efforts of
Dr. Matthew Witczak at Arizona State University. Witczak’s database consists of 7,400 data
points from 346 mixtures, all of which were used in the calibration of the NCHRP 1-40D
predictive models.” A smaller subset of the data (2,750 data points from 205 mixtures) was also
used in developing the NCHRP 1-37A predictive model.” In addition, the database contains |G*
data obtained from different materials and aging conditions. Through this research project, the
Witczak database was combined with mixtures from other national projects and efforts
undertaken at North Carolina State University (NCSU). The expanded mixture database
currently includes 22,505 data points.



In addition to a mixture database, binder properties were compiled into a similarly expansive
database. Substantial efforts have been expended to develop the appropriate binder data
processing techniques. The required processing varied depending on the type of data available
(i.e., |G*, viscosity, or binder grade). Only the critical points are presented in this report, and the
details are provided in the appendices.

Closed-form models were compared using datasets that were not used in the calibration of the
respective models. It was found that the law of mixtures parallel model shows a significant bias,
but the Hirsch model shows reasonable predictions, except for insensitivity under extreme
conditions.” For the verification database, the Hirsch model shows slightly better statistical
predictions than either of the Witczak models.” This finding, along with other statistical
analyses, led the research team to adopt the Hirsch model input parameters into the viscosity-
based (VV) and |G*-based ANN models.

Comparisons between the ANN models and the closed-form models were made. Overall, the
ANN models provide better predictability than any of the closed-form solutions. Additionally,
the ANN models are more sensitive to the input parameters. Based on these findings, the ANN
models were chosen to populate the LTPP database moduli values. The primary advantage of
using ANN modeling over statistical regression techniques is that the functional form of the
relationship is not needed a priori. Considering that many variables affect |E*| values and their
interactions, the ANN technique may capture complicated nonlinear relationships between |E*|
and other mixture variables better than regression analysis.

Early in the project, concerns arose because the database combined moduli that had been
measured using two different methods, the American Association of State Highway and
Transportation Officials (AASHTO) test protocol (TP)-62 and the asphalt mixture performance
tester (AMPT) protocol.(8’9’4) A study of the available databases revealed that the mixtures that
are tested according to the AASHTO TP-62 protocol tend to yield higher moduli values than
similar mixtures tested using the AMPT protocol. Statistical analysis to assess the significance of
the difference was not performed, but the two data ranges tend to overlap, suggesting a lack of
statistical significance in their differences. A limited experimental study wherein the modulus of
a single mixture was measured using the two protocols is also discussed. The study shows a
statistically significant difference of about 12 percent in the measured moduli across all studied
temperatures and frequencies. However, in light of the fact that both protocols are readily
available and that neither of the available protocols can be discounted without a more
comprehensive and controlled experimental program, the decision was made to include all
available data from both the AMPT protocol and AASHTO TP-62 in the calibration process.

Details of the three ANN models, including the required input parameters, model structure, and
input range, are presented in this report. The models are prioritized based on engineering
judgment and statistical analysis. From this prioritization, a decision tree was developed for
populating |E*| of the LTPP layers (see figure 1). A user may follow this decision structure and
determine the best model to use for the available input parameters.
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Figure 1. Illustration. Modulus prediction model decision tree.

At the end of phase I of this study, it was discovered that some State agencies report effective
binder content by mass instead of by volume (i.e., gravimetric instead of volumetric). As a result,
there were concerns about the use of a predictive model based on the volumetric properties of the
asphalt mixtures. After reviewing the database and carrying out some volumetric computations,
volumetric-based properties could still be calculated when gravimetric quantities were reported.
Details of how these volumetric-based quantities were computed are provided in this report.

A key component to the prediction of moduli values is ensuring that the predicted values are
rational and acceptable. To meet this criterion for the finalized ANN predictions, a set of quality
control (QC) checks on both the input parameters and model predictions were performed. In
total, seven QC checks were developed, one for the inputs and six for the modulus predictions,
and are described in detail in section 6.2 of this report. Executable software, Artificial Neural
Networks for Asphalt Concrete Dynamic Modulus Prediction (ANNACAP), was developed as
part of this project for this purpose. The software can be run for individual layers (manual mode)
or all layers simultaneously (batch mode). An unpublished manual for the software is provided in
appendix E of this report.

Statistics for the population effort are also presented in this report. The LTPP database contains
information for 1,806 layers that meet the criteria established for this project. These layers have
binder data available at a combination of different aging conditions, including unaged or
original-aged, rolling thin film oven (RTFO)-aged, pressure-aging vessel (PAV)-aged, and field-
aged. For the field-aged data, 2,223 records are available because some layer properties have




been measured at different dates. The total resulting number of records is 7,641. Using

the combined ANN models and requisite internal QC checks, modulus values are predicted

for 363 records/layers in the original-aged level, 469 records/layers in the RTFO-aged level,

1 record/layer in the PAV-aged level, and 503 records in the field-aged level. Combined, these
numbers translate to predictions for 17.5 percent of the total number of records available.
However, these records are distributed in such a way that a higher percentage of the layers has
some sort of valid prediction. Of the 1,806 layers in the database, 1,010 layers, or 56 percent,
have a modulus prediction for some aging condition. Of these 1,010 layers, 615 layers, or

34 percent of the total 1,806 layers, have reasonable predictions (i.e., an “A” grade), and

89 layers, or 4.9 percent of the total 1,806 layers, have unreasonable predictions (i.e., an

“F” grade). The remaining 306 layers, representing 17 percent of the 1,806 layers, have
questionable predictions (i.e., a “C” grade). Thus, the total percentage of layers with a
completely valid or questionable prediction is 51 percent. The quality grading system referenced
is different from the standard record status definition used in the LTPP database."” The research
team established strict QC checks to ensure that only the highest quality data were assigned an
“A” grade. The data that did not achieve an “A” grade were not considered unusable data. All
predictions are included in the database so that users can determine the data that are suitable for
their needs. In addition, the Federal Highway Administration (FHWA) can revise the criteria
used for the quality checks as deemed appropriate based on the opinions of its experts.



1.0 INTRODUCTION

|E*| is a fundamental property that defines the stiffness characteristics of HMA mixtures as a
function of loading rate and temperature. The significance of this material property is threefold.
First, it is one of the primary material property inputs in the Mechanistic Empirical Pavement
Design Guide (MEPDG) and software developed by NCHRP Project 1-37A.% MEPDG uses

a mastercurve and time-temperature (t-T) shift factors in its internal computations. The
mastercurve is constructed using a hierarchical structure of inputs ranging from laboratory tests
on HMA mixtures and binders to estimates based on properties of the HMA mixtures. Second,
|E*| is one of the primary HMA properties measured in the Superior PER forming Asphalt
PAVEment (Superpave ™) simple performance TP that complements the volumetric mix design.
Third, |E*| is one of the fundamental linear viscoelastic (LVE) material properties that can be
used in advanced HMA and pavement models that are based on viscoelasticity.

Despite the demonstrated significance of |E*|, it is not included in the current LTPP materials
tables because the database structure was established long before |E* was identified as the

main HMA property in the MEPDG. 1t is not practical to perform MEPDG level 1 laboratory
|E*| tests on material samples from LTPP test sections at this time due to a lack of materials,
budget limitations, and the absence of a suitable test method that is applicable to field samples
obtained from relatively thin pavement structures. However, the LTPP database does contain
other data that can be used to estimate the |E*| mastercurve and associated shift factors, estimate
|E*| at specific load durations and temperatures, or develop inputs to the models contained

in the MEPDG.

The primary objective of this project, as stated in the task order proposal request, was to
“...develop estimates of the dynamic modulus of HMA layers on LTPP test sections following
the models used in the MEPDG....” The team evaluated existing models used to estimate |E*|
values and additional models that are developed based on the use of ANNS.






2.0 PREDICTIVE MODELS

Several alternative predictive relationships have been developed to estimate |E*| from simpler
material properties and volumetrics. These predictive relationships can be used to populate the
LTPP database with estimated |[E*| values. Table 1 lists the predictive relationships identified by
the research team. These relationships are described briefly in the following subsections.

Table 1. Predictive relationships for |E*|.

Model
Number Model
1 Original Witczak equation (NCHRP 1-37A)&1D

2 Modified Witczak |G*| equation (NCHRP 1-40D)®)
3 Hirsch model®

4 Law of mixtures parallel model”

5 ANN model

6 Mgr-|E*| model

2.1 ORIGINAL WITCZAK EQUATION (NCHRP 1-37A)

Andrei et al. revised the original Witczak |E*| predictive equation based on data from
205 mixtures with 2,750 data points.') The revised equation is as follows:

log,, | E* |=—1.249937+0.029232 p ,,, —0.001767(p,y,)> —0.002841p, —0.058097 V/,

0.802208 ¢ +3.871977—0.0021p4+O.OO3958p3/8—0.000017(p3/8)2_,_().005470}73/4

Vieg V. 1+exp(—0.603313-0.313351log ' —0.3935321ogn) (1)*

Where:

|E*| = dynamic modulus, 103 psi.*

p200 = Percentage of aggregate passing #200 sieve.

p4 = Percentage of aggregate retained in #4 sieve.

pys = Percentage of aggregate retained in 3/s-inch (9.56-mm) sieve.
pys = Percentage of aggregate retained in 3/4-inch (19.01-mm) sieve.
Va = Percentage of air voids (by volume of mix).

Veer = Percentage of effective asphalt content (by volume of mix).
f = Loading frequency (hertz).

n = Binder viscosity at temperature of interest (10° P (10° Pas).

Witczak’s equation is based on a nonlinear regression analysis using the generalized reduced
gradient optimization approach in Microsoft® Excel’s Solver. This model incorporates mixture
volumetrics and aggregate gradation and is currently one of two options for level 3 analysis
using the NCHRP 1-37A MEPDG program.? For the viscosity term in equation 1, the program
converts all level 2 and 3 inputs into regression intercept-regression slope of viscosity
temperature susceptibility (A-VTS) values for the formulation of the |E*| mastercurve.
Furthermore, Witczak’s model has an equation (not listed) to convert A-VTS coefficients from
virgin or tank binders to RTFO- and PAV-aged binder values.
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The limitations of Witczak’s equation, acknowledged by Bari, include relying on other models to
translate the currently used |G* measurement into binder viscosity.” Because the original
Witzcak predictive equation is based on regression analysis, extrapolation beyond the calibration
database should be restricted. Bari also mentions that there is limited volumetric influence
(precision) when the model is compared to the Shell Oil model.”’ Other researchers have also
noted the need for improved sensitivity to volumetrics, such as the percentage of voids in mineral
aggregate (VMA), the percentage of voids filled with asphalt (VFA), asphalt concrete percentage
(AC), and 7,.1"?

2.2 MODIFIED WITCZAK EQUATION BASED ON |G*| (NCHRP 1-40D)®

To include binder |G*| in the predictive model, Witczak reformulated the model to include the
binder variable directly. The updated model is as follows:

6.65—0.032p,, + 0.0027(p., ) +0.011p, —0.0001(p,)*
log,y | % |=-0.349+ 0.754(] G*|, %)

2 Veur
+0.006p,5 —0.00014(p,)* ~0.087, ~1.06| -~
beff a

v,
2.558+0.032, + 0.713{ b } 0.0124p,,, — 0.0001( p, . )* —0.0098 p,

V;;e_fj’ + Vva
' 1+ exp(-0.7814 - 0.5785log | G*|, +0.8834log &, ) )
Where:
|G*|, = Dynamic shear modulus of asphalt binder (pounds per square inch).
O = Binder phase angle associated with |G*|, (degrees).

As with the NCHRP 1-37A model, equation 2 is based on a nonlinear regression analysis using
346 mixtures with 7,400 data points. The measured results of the unmodified binders have a
better correlation with the model (R? = 0.87) compared to those of the modified binders (R* =
0.79) in arithmetic scale. In logarithmic scale, both binder types have R* = 0.99. The binder
phase angle is predicted using an empirical equation (R* = 0.83). This equation is one of two
options for level 3 analysis in the most current MEPDG program.

Because some of the mixtures in this database do not contain |G*|, data, the Cox-Mertz rule,

using correction factors for the non-Newtonian behaviors (see equations 3-5), is used to
calculate |G*|;, from A-VTS values as follows:

| G*|,=0.0051 /1, ,(sin 8, )" 15204020 w0012 o)

5, =90+(~7.3146-2.6162*V'TS") *log(f. *1, ;)
+(0.1124+0.2029 VTS ) *log(f, *1, , )’ )

loglogn, » =0.9699 1, "% * 4+0.9668 " *V'TS log T, (5)



Where:

fs = Dynamic shear frequency.
O = Binder phase angle predicted from equation 4 (degrees).
nsr = Viscosity of asphalt binder at a particular loading frequency (f;) and temperature (7)
determined from equation 5 (centipoise).
Tx = Temperature in Rankine scale.
2.3 HIRSCH MODEL

Christensen et al. examined four different models based on the law of mixtures parallel model
and chose the model that incorporates the binder modulus, VMA, and VFA because it provides
accurate results in the simplest form.®” The other more complicated forms attempt to
incorporate the modulus of the mastic or the film thickness, which are difficult parameters to
measure. The suggested model for |E*| estimation is provided in equations 6—8 as follows:

. 1-P
\E*,m:3{4,200,000(1—%}3%*&(V%O’;fflj}f VMA (=5
’ (1‘ ﬁoo)+ VMA
4,200,000 3| G*|, (VFA) (6)
= — (0) Cc) — o c
¢ =-21(log Pc)* —55log P 0

(20+3|G*|, (VFA4)/(vMA))™

650+ (31 G|, (VEA)/(vMA4))" )
Where:
|E*,, = Dynamic modulus of HMA (pounds per square inch).
Pc = Aggregate contact volume.
¢ = Phase angle of HMA.

A strength of this model is the empirical phase angle equation, which is important for the
interconversion of |[E*| to the relaxation modulus or creep compliance. Weaknesses of the model
include a lack of a strong dependence on volumetric parameters, particularly at low ¥, and VFA
conditions. Also, questions arise regarding the ability of the |G*|, parameter to account for the
possible beneficial effects of modifiers.”’ It must be noted that only 206 data points were used to
determine the coefficients in the Hirsch model compared to 2,750 data points for the original
Witczak model and 7,400 data points for the modified Witczak model.



2.4 LAW OF MIXTURES PARALLEL MODEL (AL-KHATEEB MODEL)

Based on their findings from the Hirsch model, Al-Khateeb et al. suggest the following model:"”

|G*‘ 0.66
- _3(100—VMAJ (90“0’000( bVMAD

G*
100 1%,

1,100+(900(| G %M AD | o

Where:

|G*|, = Dynamic shear modulus of asphalt binder at the glassy state (assumed to be
145,000 psi (999,050 kPa).

Like the Hirsch model, this formulation is based on the law of mixtures for composite materials.
In this model, the different material phases (aggregate, asphalt binder, and air) are considered to
exist in parallel. Therefore, this model is a simpler interpretation of the Hirsch model. The
researchers note that their model addresses one of the primary shortcomings of the Hirsch model
(i.e., the Hirsch model’s inability to accurately predict |E*| of the mixture at low frequencies and
high temperatures).

Strengths of this model include the improved prediction of high-temperature and low-frequency
|E*| data for mixtures used in the FHWA accelerated loading facility (ALF) test strips.
Weaknesses include a lack of model verification and the fact that the researchers who developed
this model did so based on |[E*| values obtained from tests at higher than recommended strain
amplitudes (200 pe versus the recommended maximum of 75-150 pe).

2.5 ANN MODELS

The NCSU research team employed the ANN technique to develop new |E*| predictive models.
The primary advantage of this approach over statistical regression is that the functional form of
the relationship is not needed a priori. Considering that so many variables affect |E*| values and
their interactions, the ANN technique captures complicated nonlinear relationships between |E*|
and other mixture variables better than regression analysis.

The ANN technique was used in this research to develop several different models. The first
model is the ANN model that predicts |E*| values using the input variables employed in the
modified Witczak equation (i.e., binder dynamic modulus and phase angle, aggregate gradation,
and volumetrics of the HMA mixture). The effort to develop this ANN model is described later
in this report. The ANN technique was also applied to backcalculate |E*| values from M. During
the FHWA DTFH61-05-RA-00108 project, the NCSU research team developed a mechanistic
approach to compute My from |E* of HMA."*!'¥) This approach was verified successfully using
measured data from mixtures with varying gradations and binder characteristics. The verified
solutions were then applied to an available |E*| database to estimate the My values corresponding
to the |[E*| values. This database was used to develop an inverse algorithm based on the ANN
technique that can predict |E*| from M. The development and verification of Mg-|E* ANN are
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presented later in this report. Finally, the ANN technique was used to develop an |E*| predictive
model based on binder viscosity information. This ANN model is also described in this report.

2.6 SUMMARY OF INPUT VARIABLES

Table 2 presents the necessary input variables for each predictive relationship discussed
previously. For models that utilize |G *|5, predictions are only possible at the temperatures and
frequencies where |G *|, values are available. Having |G*|, only at the conditions used in
Superpave ™ testing is not sufficient for generating |[E*| values over the range of conditions
typically needed for mechanistic analysis (14—129.2 °F (-10-54 °C)). For example, if the user
has |G*|; at only 147.2 °F (64 °C) and 10 radians per second (rad/s), then it is possible to predict
the |E*| value only at 147.2 °F (64 °C) and 10 rad/s. To predict |E*| at 77 °F (25 °C) and 25 rad/s,
the user must measure |G *|, at 77 °F (25 °C) and 25 rad/s.

Table 2. Model variables.

LTPP Data
Model Number Availability
Specific General
Pavement | Pavement
Study Study
Variable Description 1/2/3/4|5/6] (SPS) (GPS)'
Mixture Mz X | Yes Yes
1G*|, X|X|X|X Yes? No
o X X Yes No
VMA (percent) X | X Yes Yes*
VFA (percent) X Yes Yes*
Aggregate passing #200 sieve (percent) X | X X Yes Yes
Aggregate passing #4 sieve (percent) XX X Yes Yes
Aggregate passing °/g-inch sieve (percent) X | X X Yes Yes
Aggregate passing °/4-inch sieve (percent) X | X X Yes Yes
V, (by volume of the mix (V) (percent) X | X X Yes Yes
Effective asphalt content (by total volume of x| x X
the mixture) (percent) Yes Yes*
Loading frequency (Hz) X Yes No
A-VTS X Yes’ Yes’

1 inch =25.4 mm

'The in-service pavement sections are classified in the LTPP program as GPS and SPS.

%|G*, was tested for SPS-9 sections only.

*Data for penetration at 77 and 115 °F (25 and 46 °C), cone and plate viscometer at 77 °F (25 °C), absolute viscosity at
140 °F (46 °C), and kinematic viscosity at 275 °F (135 °C) are available.

*Indicates information was reported by an agency.

*Data for ring and ball softening point, penetration at 39.2 and 77 °F (4 and 25 °C), absolute viscosity at 140 °F
(46 °C), and kinematic viscosity at 275 °F (135 °C) are available (reported by agency).
Note: Blank cells indicate that the input parameter is not required in the model.
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A preliminary review of available information in the LTPP materials database revealed that
measured |G *|; data are only available for most of the SPS-9 projects and only at 10 rad/s at
multiple temperatures. Even the available |G*|, data are measured from binders aged at different
levels (i.e., RTFO-aged versus PAV-aged binders). The lack of complete |G *|, data at multiple
temperatures and multiple frequencies is a serious problem because all of the models except the
original Witczak equation require this information. (Note that the Mz-|E* ANN model needs the
binder t-T shift factor as well.) During the course of this project, the NCSU research team
developed empirical models that allow the estimation of the RTFO-aged |G*|, values at multiple
temperatures and frequencies from the |G*|, values obtained at a single frequency and multiple
temperatures and aging levels.

12



3.0 DATABASES

To accomplish the goals of the project, modulus values from multiple mixtures and binders were
necessary. These databases were assembled from existing national efforts and from data obtained
at NCSU. In the following sections, the databases are summarized by material type (i.e., binder
or mixture). First, the specific reasons for such databases are given.

3.1 STATEMENT OF NEED

The most comprehensive database for both binder moduli and viscosity and mixture moduli that
is currently available is the one used to develop the Witczak and modified Witczak models. This
database is extensive and covers a range of material characteristics. At the outset of this project,
such a database was sufficient to meet the project goals. However, an indepth evaluation of the
database identified the following three problems in using it for model development:

1. Different definitions of frequency for the binder |G *| and mixture |E*| data are used.
2. Estimated rather than measured |G*| and ¢, data are used to populate the database.

3. The estimated |G*| data at temperatures lower than or equal to 39.9 °F (4.4 °C) are estimated
in a manner that is inconsistent with other temperatures, and the method of estimation is not
satisfactorily explained.

3.1.1 Inconsistent Definition of Frequency

In developing the Witczak database, researchers used two definitions for frequency. The decision
to use two definitions was motivated by widespread confusion between frequency and time for
LVE materials and the differences in the binder and mixture fields. Researchers studying asphalt
binders have been influenced by rheology and often cite the relationship between time and
frequency as follows:

1
27 f, (10)

=

1
@
Where:

@ = Angular frequency in radians per second.

t =Time.
fs = Shear frequency.

Conversely, researchers who focus on AC tend to use the argument that time and frequency are
related as follows:

=

~|-

1
A (11)

13



Where:

f = Frequency (hertz).
/. = Frequency under axial compression.

This latter interpretation is more accurate if the time under consideration is the pulse time (i.e., it
equates the modulus at a given frequency to the appropriate modulus when the material is
subjected to a load pulse of a given duration). The former definition is more accurate when it is
necessary to equate the modulus determined at a given frequency to the material modulus under
a fixed load after a given duration.

The use of different definitions for frequency appears to be an effort to appease both mixture and
binder branches and their techniques for data interpretation. To coordinate these two datasets, the
Witczak data match time from equations 10 and 11. Such an approach allows the prediction of
the modulus of AC at 10 Hz and 77 °F (25 °C). As a result, the appropriate binder modulus that
can substitute into equation 2 is the one at 10 rad/s (1.59 Hz) and 77 °F (25 °C). This is referred
to as the inconsistent definition of frequency in this report because the frequency at which |E*|
and |G* are measured is not consistent. A small sample of the database that clearly shows this
inconsistent definition is shown in table 3.

Table 3. Example of summarized mixture and binder properties in the original Witczak

database.
Mix |Temperature| Mixture |[E*| Test Data Binder Stiffness Data
Number (°C) f. (Hz) |[E*| (psi) | fs (Hz) | |G*| (psi) | O (degrees)
1 4.4 1 1.35E+06 0.16 | 9.81E+02 54.7

°C  =(°F-32)/1.8
1 psi = 6.89 kPa

A more logical approach, which was used in all of the other |G *|-based models and is presented
in table 2, is to use a consistent definition for frequency. To predict the mixture modulus at

10 Hz and 77 °F (25 °C), the logical binder modulus that should be used is the one at 10 Hz and
77 °F (25 °C). Such an effort required the complete repopulation of the Witczak database, which
was part of the effort in this project.

Because part of this research effort was to assess the sensitivity of existing models, independent
databases were needed. These databases are summarized in the following sections; however, it
should be noted that for fairness, care was taken to ensure that the inconsistent definition was
used to make predictions using the modified Witczak model. The consistent definition was used
for development of the ANN-based model.

3.1.2 Use of Estimated |G*| Values

The |G*| data in the Witczak database are not measured values and were estimated using the
predictive equations given in equations 3—5. Such an approach was deemed necessary for
consistency purposes. Even though the |G*| binders were measured for several of the mixtures,
no such data were available for approximately half of the mixtures in the database. By using |G*|
from the predictive equations, the entire database could be used to develop the modified Witczak
model. Therefore, the effects of the errors in the binder modulus model were integrated into the
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predictive capabilities of the model. To evaluate the predictive power of these models and to
assess the need to return to the measured data, the measured and predicted |G*| and o6, values for
the 8,940 data points from 41 binders (including 9 modified binders) used in developing
equations 3—5 were compared. Figure 3 illustrates that the model shows little bias, but the errors
in the predictive models are significant. In some cases, the errors exceeded 100 percent, which
could translate directly to errors in the predicted mixture moduli. The predicted o, is shown in
figure 4, and the errors were even more significant than they were for the predicted |G*|. Again,
such errors can have a significant effect on the predictive model’s capabilities. An independent
dataset was also used to assess the errors, and the results are shown in figure 5 (arithmetic scale)
and figure 6 (logarithmic scale). This analysis shows that any given binder may have significant
bias, the effects of which will directly translate to |E*| predictions.

To correct this problem, the binder data in the Witczak database were completely ignored, and
only mixtures that had independently measured |G*| values available were used. This approach
reduced the number of usable mixtures to approximately half the number that was initially
thought to be available.
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Figure 2. Graph. Comparison between the Witczak predictive model and measured |G*|;
values in arithmetic scale.
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Figure 3. Graph. Comparison between the Witczak predictive model and measured |G*|;
values in logarithmic scale.
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Figure 5. Graph. Comparison between the Witczak predictive model and measured |G*|;
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database in arithmetic scale.
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Figure 6. Graph. Comparison between the Witczak predictive model and measured |G*|;
values using Citgo binders in the NCDOT database in logarithmic scale.
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3.1.3 Low-Temperature |G*| Values

Through the process of determining that the binder data in the Witczak database consist of
predicted values, it was also found that the low-temperature binder moduli were not determined
in the same way as the intermediate and high temperatures. It was not possible to discern how
these values were determined for the database because they do not agree with the predictions
made from a surrogate model. Additionally, they are approximately two orders of magnitude
smaller than typical values for these temperatures. Measured moduli for the available binders
were provided only for temperatures as low as 59 °F (15 °C).

To address this problem, the measured binder data that were available had to be processed in a
way that would allow extrapolation. According to the Christensen Anderson Marasteanu (CAM)
model, shown in equations 12 and 13, the following is assumed for all binders in the database:

G
6% = —
oYy %
[1 +( < J ]
5= 90m, :
I+ (fx/ 1) (13)
Where:
Ge = Maximum shear modulus or glassy modulus (pascal).
0 = Binder phase angle (degree).
Jr = Reduced frequency (hertz).
fe,me,and k= Fitting coefficients.

Equation 12 has been characterized for each of the binders using least square optimization
techniques. The fit was verified, and the low-temperature binder stiffness was determined. Note
that for consistency, this functional form was also used to populate the binder data at the same
temperatures as the |E*| measurements. Unfortunately, the Witczak binders do not provide
available data to assess potential errors using this extrapolation methodology. To fully assess the
errors, additional binder data, which include bending beam rheometer (BBR) measurements or
shear modulus measurements taken at extremely low temperatures, and dynamic shear rheometer
(DSR) measurements at intermediate and high temperatures are required.

3.1.4 Aging Effects

After accounting for these binder data issues, it was found that the lack of binder data at different
aging levels is a serious limitation of the Witczak database. This limitation is important because
the LTPP database contains binder modulus values at original-, RTFO-, PAV-aged, and even
recovered conditions. Accounting for these inconsistencies in the analysis process required an
understanding of their effects on the binder shear modulus. Because the data in the Witczak
database are insufficient for this purpose, additional binder databases were necessary.
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3.2 BINDER DATABASES

There are six binder datasets: (1) Witczak, (2) FHWA mobile trailer, (3) FHWA TPF-5(019),
(4) NCDOT, (5) Western Research Institute (WRI), and (6) Citgo.(IS) The following sections
describe these binder datasets.

3.2.1 Witczak Binder Database

Table 4 summarizes the binders that make up the Witczak binder database. Each of these binders
corresponds to a particular mixture or mixtures in the Witczak |E*| database. The binders in this
database have measured |G *| values available at a range of temperatures and frequency
combinations as well as various aging conditions (original, RTFO, and PAV). Additionally, in
table 4, a subset of these binders has measured BBR results. Note that the Citgo and WRI binders
are the only ones with BBR data. Each binder has BBR stiffness and slope values at -11.2, -0.4,
and 10.4 °F (-24, -18, and -12 °C) (WesTrack) or -22, -11.2, and -0.4 °F (-30, -24, and -18 °C)
(all others) and times of 8, 15, 30, 60, 120, and 240 s, respectively. All binders in this database
have viscosity data in the form of temperature susceptibility function parameters A and VTS.

Table 4. Summary of |G*| data available in the Witczak binder database.

Temperature | Frequency | Performance BBR
Binder Code O (rad/s) Grade (PG) | Original | RTFO | PAV | Available
ALF AC-5 v v v v
ALF AC-10 v v v v
58
Paramount
PG 58-22 v v v
ALF AC-20 v v v v
WesTrack v v v v
15, 25, 35, 45,
Chevron PG 64-22 60. 70, 80. 95, 64 v v v
Paramount 105. and 115
PG 64-16 ’ 1, 1.59, v v v
Navajo PG 70-10 2.51,3.98, 70 v v v
ALF-Novophalt 6.31, 10, v v v v
Chevron PG 76-16 15.9,25.1, 76 v v v
Navajo PG 76-16 39.8, 63.1, v v v
ALF-Styrelf and 100 82 v v v v
MNRD120P 15,25, 35, 45, 58] v v v
60, 70, 80, 95,
MNRDAC20 and 105 64 v v v v
MPA Citgo 70-22 70 v v v
MPA-Elvaloy 25, 35, 45, 60, 76 v v v
MPA-TA 70, 80, 95, v v v
MPA-Novophalt 105, and 115 %) v v v
MPA-Stylink v v v

°C = (°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.
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3.2.2 FHWA Mobile Trailer Binder Database

The FHWA mobile trailer database contains original-, RTFO-, and PAV-aged |G *| values for a
range of binders throughout the United States (see table 5). Note that the temperature and
frequency combinations are not as consistent or as broad as those in the Witczak database. All of
the asphalt binders in this database have viscosity data available.

Table 5. Summary of |G*| data available in the FHWA mobile trailer database.

Temperature Frequency BBR
Binder Code °O) (rad/s) PG |Original | RTFO | PAV | Available

5,17, 23, 25, 40, 53

TIA 0358 and 45 v v v
5,15.6, 19.6, 22,

WI 0357 23.6, 25,31.2,45 v v v
5,17.9,23.9, 25,

ME 0359 37.5, and 45 v v v

LA 0462 5, 25, 45, and 54 v v v

WA 0463 5, 15, 25, 38, and 45 64 v v v

KS 0464 5,31, and 45 v v v

4.4,5,13,21.1, 25,

NY 0466 37.8, 45, and 54.4 v v v
4.4,5,13,15,22,
25, 37.8, 45, and

MA 0467 54.4 v v v

NC_0360 5,20.8,25,and 45| 0.1,0.63, 1, v v v
5,13,25,45,and | 3.14, 6.3, 10, 70

MN 0465 54.4| 31.45,62.9, v v v

AZ 0356 5,22,25,and 45| 100, 157.199 76 v v v

CO 0777-BA v

CO_0777- 58

BA+ADVERA v

CO_0777-

BA+SASOBIT | -10,4.4,21.1,37.8, 64 v

OK 0673 and 54.5 v

SD 0674 v

MO 0672 70 v

AL 0675 76 v

NJ 0671 v

ME 0570 64 v

NE 0569 4.4,21.1,37.8, and v

KS 0568 54.10 70 v

KS 0568 (2) v

°C =(°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.
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3.2.3 FHWA TPF-5(019) Binder Database

A portion of the current FHWA ALF binder data is available to the research team and is
summarized in table 6. For these materials, DSR values are available at a wider range of

frequencies than in the other databases. At the time this report was written, BBR results were not
available; however, the possibility of obtaining such values along with data from other binders in
the TPF-5(019) study is under investigation. Also, these binders have |G * values measured

under original-, RTFO-, and PAV-aged conditions. Viscosity values are not available for
these materials.

Table 6. Summary of |G*| data available in the FHWA TPF-5(019) binder database.

Temperature Frequency BBR
Binder Code cO) (rad/s) PG | Original | RTFO | PAV | Available
Binder (AB)-B- 0.100, 0.126, 5>
6261 0.158, 0.200, v
SBS LG base- 0.251, 0.316, 53
B-6275 0.398, 0.501, v
PG 70-22 1-B- 0.631, 0.794,
6267 1.000, 1.259, v
PG 70-22 2-B- 1.585, 1.995,
6272 7,19,25, 31, 2.512,3.162, v
40, 46, 58, 64, 70
PG 70-22 3-B- 70 and 82 3.981, 5.012,
6298 ’ 6.309, 7.942, v
SBS LG-B- 10.000, 12.589,
6295 15.849, 19.952, v
2.118,31.622,
Terpoly-B-6289 39.809, 50.115, 76 v
62.091, 79.426,
CRTB-B-6286 and 100.000 v

°C =(°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.
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3.2.4 NCDOT Binder Database

The binders corresponding to NCDOT mixture data are available in the NCDOT binder database,
which is summarized in table 7. Data for these binders, both |G*| and viscosity, are available
only for the RTFO-aged condition.

Table 7. Summary of |G*| data available in the NCDOT binder database.

Temperature | Frequency BBR

Binder Code O (rad/s) PG | Original | RTFO | PAV | Available
AA-Inman 4

El Paso-Apex 0.06, 0.31, v

El Paso- 0.63, 3.14, 64

Charlotte 16, 22, 28, 6.28,31.42, v

Citgo-Wil-64 and 40 62.83, and v

AA-Sali-70 94.25 70 v

Citgo-Wil-70 v

AA-Sali-76 76 v

°C = (°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.

3.2.5 Citgo Binder Database

Table 8 summarizes the binders that are used in the Citgo database. This database contains

original-, RTFO-, and PAV-aged |G*| and BBR results for two different binders used in

NCHRP 9-25 and 9-31."%'” No viscosity measures are available for these binders.

Table 8. Summary of |G*| data available in the Citgo binder database.

Binder | Temperature Frequency BBR
Code (°O) (rad/s) PG | Original | RTFO | PAV | Available
0.1, 0.159, 0.251,
0.398, 0.631, 1,
Citgo A | 15 Zf)’ ‘;51 ’(14755’ 1.59,2.51,3.98, | 70 v v v .
’ 6.31, 10, 15.9, 25.1,
Citgo B 39.8, 63.1, and 100 v v v v

°C =(°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.

3.2.6 WRI Binder Database

The WRI binder database consists of two sets of binders from the Kansas and Nevada test sites.
The four binders used at the Kansas site are from different crude sources, but all are PG 64-22.
Additionally, the four binders used at the Nevada site are from different crude sources, each of
which meets the AC-30 requirements of AASHTO M226-80, “Standard Specification for
Viscosity Graded Asphalt Cement.”"® Table 9 summarizes the relevant information for the
binders in this database. Viscosity values for these binders are not available.
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Table 9. Summary of |G*| data available in the WRI database.

Temperature | Frequency BBR
Binder Code O (rad/s) PG | Original | RTFO | PAV | Available
KS-1-Sinclair Tulsa 0.0, 10.0, 0.10, 0.13, v v v
KS-2-Coastal 20.0, 30.0, 0.16, 0.20,
Eldorado 40.0, 50.0, 0.25, 0.32, 64 v v v
KS-3-Koch Muskogee 60.0, 70.0, 0.40, 0.50, v v v
KS-4-Royal Trading and 80.0| 0.63, 0.79, 1.0, v v v
1.26, 1.58, 2.0,
NV-1-Sinclair WY 2.51,3.16, 3.9, v v v
0.0, 10.0, 5.0,6.3,7.9,
NV-2-Crown Nevada 20.0, 30.0, 10.0, 12.59, v v v
40.0, 50.0, 15.6,19.9,| AC-30
NV-3-Crown 60.0, and 25.11, 31.6,
Venezuela 70.0 39.8, 50.1, v v v
NV-4-Crown 63.1,79.4,
Canadian and 100.0 v v v

°C =(°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.

3.3 MIXTURE DATABASES

The mixture databases for this project are similar in content to the binder databases; however, the
temperatures and frequencies are different. These mixture databases contain the volumetric
information listed in table 2. There are seven mixture datasets: (1) Witczak, (2) FHWA mobile
trailer I, (3) FHWA mobile trailer II, (4) FHWA TPF-5(019), (5) NCDOT, (6) WRI, and
(7) Citgo. The following sections describe the mixture databases.

3.3.1 Witczak Mixture Database

Over the years, differences in TPs used to develop the database have led to limitations of the use
of some mixtures in the Witczak database. The complete database contains 7,400 data points;
however, the database used for this project has been limited to 3,180 data points for

106 mixtures. To avoid confusion, this limited database is referred to as the “processed
Witczak database.” These mixtures are summarized in table 10 along with the spread of
volumetric properties. Note that for all of the mixtures in this database, the true measured |G*|
data are available (see table 4).

3.3.2 FHWA Mobile Trailer Mixture Database

A primary difference between the FHW A mobile trailer database and the processed Witczak
database is TP. The mobile trailer database is populated with |E*| data obtained from the
procedure and equipment suggested for AMPTs, whereas the processed Witczak database is
populated using data obtained from the AASHTO TP-62 protocol.® For modeling purposes,

the mobile trailer mixture database is separated into two groups: FHWA I and FHWA II, which
are summarized in table 11 and table 12, respectively. Note that a comparison of table 10 with
table 11 and table 12 shows that the processed Witczak database covers an overall broader range
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of conditions than the mobile trailer mixture database. However, the latter database has smaller
values of some parameters, particularly those related to the mixture gradation (i.e., P34, P33,
and p4). This indicates that smaller nominal maximum-sized aggregate (NMSA) mixtures

are represented more strongly in the mobile trailer database than they are in the processed
Witczak database.

3.3.3 FHWA TPF-5(019) Mixture Database

The FHWA ALF study mixtures are available for the TP-62 test conditions. These mixtures
consist of the same aggregate type and gradation, air void content, and asphalt content. The only
differences between these mixtures are the asphalt type and a slight difference in the effective
asphalt content. Table 13 presents a summary of the FHWA TPF-5(019) mixtures.!">
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Table 10. Summary of |E*| data available in the processed Witczak mixture database.

Aging Condition
Long-Term
Number Total Short-Term | Oven Aging
of Mix | Number | Temperature | Frequency | Plant or | Oven Aging | (LTOA) or
Binder Code | Variations | of Tests (°O) (Hz) Unaged | (STOA) Field
MPA Citgo
70-22 4 4 4
MPA-Elvaloy 4 4 2‘}71-83‘7‘-;" 4
MPA-Novophalt 4 4 2'11121 s 4 ‘; 4
MPA-Stylink 4 4 4
MPA-TA 4 4 4
ALF AC-5 6 6 4 2
ALF AC-10 2 2 1 1
ALF AC-20 6 6 4 2
WesTrack 34 34 %)55’ la?r; dS 2)11’ 22 12
Chevron 64-22 17 17 ’ ' 17
paramount | || 10,44, 211, |
— 37.8, and 54.4
Navajo70-10 2 2 2
ALF-Novophalt 2 2 1 1
Chevron 76-16 2 2 2
ALF-Styrelf 2 2 1 1
MNRDI120P 8 8 6 2
MNRDAC20 4 4 1 3
Maximum 26.1
P3a Minimum 0
Maximum 41
P3s Minimum 15
Maximum 73
P4 Minimum 30
Maximum 6.6
P200 Minimum 2.6
V Maximum 12.5
“ Minimum 0.7
Vg M?lx.imum 13.5
Minimum 6.1
Maximum 22.2
VMA Minimum 11.2
Maximum 95.1
VFA Minimum 32.8

°C =(°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.
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Table 11. Summary of |E*| data available in the FHWA I mobile trailer mixture database.

Aging Condition
Number of Total LTOA
Mix Number Frequency | Plant or or
Binder Code | Variations | of Tests Temperature (°C) (Hz) Unaged | STOA | Field
WI 0357 9 36| 15.6,19.6,23.6, and 31.3 24 12
ME 0359 9 36 17.9,23.9, and 37.5 24 12
LA 0462 9 28 25,45, and 54 15 13
NY 0466 12 32 13, 25, and 45 20 12
MA 0467 5 16 15, 25, and 45 16
NC 0360 13 52 21, 25, and 45 40 12
MN 0465 11 39 13, 25, and 45 27 12
AZ 0356 9 26 22 and 44 14 12
CO 0777 1 4 4
CO 0777+ ADV 1 4 25,10, 5, 1, 4
CO 0777+ SAS 1 4 0.5, and 0.1 4
OK 0673 13 34 22 12
MO 06722 6 24 24
AL 0675° 24 96 72 24
NJ 0671 6 24 12 12
ME 0570 11 44 32 12
NE 0569 16 54 46 8
KS 0568' p 30 21.1,37.8, and 54.4
KS 0568(2)! 4 20
Maximum 11.6
P34 Minimum 0
Maximum 45.1
Pas Minimum 23
Maximum 67.4
Pa Minimum 223
Maximum 6.6
P200 Minimum 2.7
v Maximum 8.7
“ Minimum 4.5
Vieg M?lx.imum 12.7
Minimum 4.8
Maximum 20
VMA Minimum 9.5
Maximum 70.3
VFA Minimum I

°C = (°F-32)/1.8

1VbLﬁ»is not given, “inconsistent ID numbers for correlating volumetric and |E*| data, and *measured |[E*| under confining pressure.

Note: Blank cells indicate data are unavailable in the database.
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Table 12. Summary of |E*| data available in the FHWA II mobile trailer mixture database.

Aging Condition
Number Total LTOA
of Mix Number Temperature Frequency | Plant or or
Binder Code | Variations | of Tests O (Hz) Unaged |STOA | Field
IA 0358 7 28 17, 23, and 40 16 12
WA 0463 6 24| 15, 25, 38, and 45 205’51;1; dsblf 2] 12
KS 0464 8 32 25,31, and 45 o ' 20 12
Maximum 2.1
b3 Minimum 0
Maximum 17
P3s Minimum 14.7
Maximum 45.9
P4 Minimum 34.1
Maximum 6.5
P200 Minimum 3.8
y Maximum 8.5
“ Minimum 5.7
Ve M?lx.imum 11.5
< Minimum 8.2
Maximum 19.9
VMA Minimum 15.1
Maximum 65.5
VEA Minimum 52.1

°C = (°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.
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Table 13. Summary of |[E*| data available in the FHWA TPF-5(019) mixture database.

Aging Condition
Number Total LTOA
of Mix Number | Temperature | Frequency | Plant or or
Binder Code Variations | of Tests cO) (Hz) Unaged | STOA | Field

PG 70-22 3-B-
6298 1 3 25,10, 5, 3
SBS LG-B-6295 1 3] 71052040, 1 s and 3
Terpoly-B-6289 1 3 and 54 0.1 3
CRTB-B-6286 1 3 3
P3/4 0.0
P38 14.8
P4 44
P200 6.7
Va 4

Maximum 12.4
Viesr Minimum 12.3

Maximum 16.4
VMA Minimum 16.3

Maximum 75.6
VFA Minimum 75.5

°C =(°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.
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3.3.4 NCDOT Mixture Database

The NCDOT mixture database consists of 36 AC mixtures covering a range of materials. All of
the mixtures were tested at NCSU. The test conditions for the mixtures in this database are most
similar to the TP-62 protocol. The database is summarized in table 14.

Table 14. Summary of |E*| data available in the NCDOT mixture database.

Aging Condition
Total Plant LTOA
No. of Mix | No. of | Temperature | Frequency or or
Binder Code Variations | Tests cO) (Hz) Unaged | STOA | Field
El Paso-Charlotte-64 2 2 2
Citgo-Wil-64 24| 24 25,10,5, 1, 24
AA-Sali70 1 1 -10, 10, 35, 0.5,0.1, 1
Citgo-Wil-70 8 8 and 541 0.05 ’033‘11 8
AA-Sali-76 1 1 ) 1
Maximum 31
b3 Minimum 0
Maximum 55
b3 Minimum 1
Maximum 67
P4 Minimum 14
Maximum 6.6
P200 Minimum 3
v Maximum 49
“ Minimum 3
Vs mgx.imum 14.2
Minimum 7.3
Maximum 18.4
VMA Minimum 10.8
Maximum 79.1
VEA Minimum 67.7

°C =(°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.

3.3.5 WRI Mixture Database

The results of laboratory testing and analysis of plant-produced AC mixtures from two

sets of four test sections constructed for the WRI on US-77 in Kansas and on I-15 in

Clark County, NV, are documented in this database. In each of these two sites, the four test
sections were constructed using the same asphalt mixture and four binders from different crude
sources. The laboratory testing was conducted on plant-produced samples that were compacted
to a target air void of 7 percent using a gyratory compactor. The tests were conducted for the as-
received plant-aged condition and after LTOA in accordance with AASHTO R30-02, “Standard
Specification for Mixture Conditioning of Hot Mix Asphalt (HMA).”"® A summary of the

relevant information in this database is shown in table 15.
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Table 15. Summary of |E*| data available in the WRI database.

Aging Condition
Total LTOA
No. of Mix | No. of | Temperature | Frequency | Plant or or
Binder Code Variations | Tests O (Hz) Unaged | STOA | Field
KS-1-Sinclair 4 4 2 2
KS-2-Coastal 4 4| 4.4,21.1, and 10, 1, 0.1, 2 2
KS-3-Koch 4 4 40 and 0.01 2 2
KS-4-Royal 4 4 2 2
NVZ.Cromn - 10,5,1,05, —— i
NV-3-Crown ) ) 4,20, and 40 0. 12100.0051, 1 1
NV-4-Crown 2 2 ana v 1 1
Py ng.imum 9
Minimum 1
Py M?lx.imum 40
Minimum 14
o, Maximum 50
Minimum 32
Pano Mfclx.imum 6.6
Minimum 4.2
v Maximum 7.4
“ Minimum 6.6
Vies ng.imum 9.8
- Minimum 6.4
Maximum 17.2
VMA Minimum 13.4
Maximum 57.4
VEA Minimum 47.1

°C = (°F-32)/1.8

Note: Blank cells indicate data are unavailable in the database.

3.3.6 Citgo Mixture Database

The Citgo database consists of two mixtures fabricated with the same aggregate structure
(0.4-inch (9.5-mm) Superpave ™ mixture) but with different asphalt binders. Both STOA and

LTOA were conducted on these mixtures. A summary of the mixture properties is presented in
table 16. These two mixtures are included in NCHRP projects 9-25 and 9-31 (1817 For this
database, the modulus values were measured in accordance with the AASHTO TP-62 protocol,

and the aging was conducted in accordance with AASHTO R30-02.%!
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Table 16. Summary of |E*| data available in the Citgo mixture database.

Aging Condition
Total LTOA
No. of Mix | No. of | Temperature | Frequency | Plant or or
Binder Code | Variations | Tests cO) (Hz) Unaged | STOA | Field
. 10,5, 1
Citgo-A SO
: 2 4! 4,20,and40| %>0L 2 2
] 0.05, and
Citgo-B 2 4 0.01 2 2
P34 0
P3s 6
Py 50
P20o 5.1
V, 4.3
Voefr 11.5
VMA 15.8
VFA 72.6

°C = (°F-32)/1.8
Note: Blank cells indicate data are unavailable in the database.

3.3.7 FHWA My Database

Under the FHWA DTFH61-05-RA-00108 project, NCSU researchers tested a set of mixtures for
both |E*| and Mz."* The importance of this database is that it can be used to verify the predictive
capabilities of the Mz ANN model. In total, seven different mixtures are included with two
different asphalt binder types. The asphalt binders used for these mixtures are not part of the
binder database. Because these mixtures are only used for the Mz ANN verification, the relevant
information is different (see table 17). The designation for these mixes follows the NCDOT
convention where the first letter represents either a surface mix (S) or a base mix (B). The second
number represents the NMSA, and the final letter represents the gradation of fine (F), coarse (C),
or flat and elongated (FE). The “M” on the last mix denotes that the binder was modified. Two of
the study mixtures are derivations of the S12.5C mix in that only the asphalt content was
changed by either =1 percent.

Table 17. Summary of |E*| data available in the My database.

Percent | Percent | Asphalt

Mix V., AC Grade
S12.5C 4 5.5
S12.5C-AC+1 4 6.5
S12.5C-AC-1 4 4.5

S12.5FE 4 57| PO 0422
S12.5F 4 4.8
B25.0C 4 49

S12.5CM 4 5.5 | PG 76-22
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3.3.8 LTPP Data

Mixture and binder properties of AC layers on LTPP test sections at different aging conditions
(i.e., original-, TFO/RTFO-, PAV-aged, and field-aged) were extracted from the LTPP database

for use as inputs for the models developed as part of this study. The following list provides the

criteria for selecting the layers to be considered in dynamic modulus estimates:*”

e Layer thickness of 1 inch (25.4 mm) or greater as reported in the TST LOS5B table.

e Virgin or recycled hot mix, hot laid, and dense graded AC (i.e., MATL CODE 1 or 13 in
the TST LO5B table).

e Placed as an original layer, overlay layer, or AC layer below the surface
(i.e., DESCRIPTION 1, 3, or 4 in the TST LOS5B table).

3.3.9 Input Source Hierarchy

Many properties of interest for this project are available in multiple locations within the LTPP
database. Because of this, the team established a hierarchy of data sources to extract information
from the LTPP database. The following lists provide the priority used in extracting data (lower
numbers denote higher priority) for each of the aging conditions. Included are the LTPP module
and the specific table name for each data source.

Binder shear modulus and phase angle are as follows:?”
Original properties:

1. TST module (TST_AEO07).

2. SPS module (SPS9 SP PMA AC PROPERTIES).
TFO/RTFO- and PAV-aged properties:

1. TST module (TST_AEOQ07).

2. SPS module (SPS9 SP PMA AC PROPERTIES).
Field-aged properties:

1. TST module (TST_AEO07).
Viscosity ring/ball, penetration, absolute viscosity, and kinematic viscosity are as follows:*”
Original properties:

1. TST module (TST AE02/AE04/AE0S).

2. SPS module (SPS? PMA AC PROPERTIES).
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3. RHB module (RHB_ACO PROP/HMRAP COMBINE AC).
4. INV module (INV_PMA_ ASPHALT).
TFO/RTFO and PAV-aged properties:
1. RHB module (RHB ACO LAB AGED AC/HMRAP LAB AGED ACQC).
2. INV module (INV_PMA ASPHALT).
Field-aged properties:
1. TST module (TST AE02/AE04/AE0S).

Volumetrics-VMA, VFA, V,, theoretical maximum specific gravity (G,,;), and bulk specific
gravity (Gpm) are as follows:??

Original-, TFO/RTFO-, and PAV-aged properties:
1. SPS module (SPS? PMA MIXTURE PROP) (as-placed).
2. RHB module (RHB ACO MIX PROP/HMRAP MIX PROP) (as-placed).
3. INV module (INV_PMA ORG_MIX).
Field-aged properties:
1. TST module (TST AC02/AC03).
Mg 1s as follows:?”
Field-aged:
1. TST module (TST_ACO07).

3.3.10 Data Structure and Detail

Table 18 provides the location within the LTPP database where the information was extracted
and a summary of the data utilized in this project.
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Table 18. Summary of extracted LTPP data.

Field Name Description
STATE CODE Code representing State or province
PROJECT ID SHRP ID for GPS sections and PROJECT ID for SPS sections

PROJECT LAYER

Project layer code as established in TST LOS5B for SPS sections; layer

code as established in TST LO5B for GPS sections®”

CONSTRUCTION DATE

Date layer was constructed

SAMPLE TYPE

l—original binder, 2—Ilab-aged (TFO/RTFO), 3—lab-aged (PAV),
and 4—field-aged

GSTAR SAMPLE DATE

Date of |G*| sampling (if field-aged sample)

GSTAR 1

Binder complex modulus at temperature 1

PHASE ANGLE 1|

Phase angle at temperature 1

GSTAR TEMP 1

Binder complex modulus at temperature 1

GSTAR 2

Binder complex modulus at temperature 2

PHASE ANGLE 2

Phase angle at temperature 2

GSTAR TEMP 2

Binder complex modulus at temperature 2

GSTAR 3

Binder complex modulus at temperature 3

PHASE ANGLE 3

Phase angle at temperature 3

GSTAR TEMP 3

Binder complex modulus at temperature 3

GSTAR 4

Binder complex modulus at temperature 4

PHASE ANGLE 4

Phase angle at temperature 4

GSTAR TEMP 4

Binder complex modulus at temperature 4

GSTAR 5

Binder complex modulus at temperature 5

PHASE ANGLE 5

Phase angle at temperature 5

GSTAR TEMP 5

Binder complex modulus at temperature 5

GSTAR 6

Binder complex modulus at temperature 6

PHASE ANGLE 6

Phase angle at temperature 6

GSTAR TEMP 6

Binder complex modulus at temperature 6

GSTAR _SOURCE

LTPP module from which binder complex modulus was extracted
(i.e., TST = testing, RHB = rehabilitation, SPS = SPS construction,
INV = inventory, and CALC = calculated)

BINDER SAMPLE DATE

Date of binder sampling (if field-aged sample)

RING BALL

Ring/ball (°F) results

RING BALL SOURCE

LTPP module from which ring and ball was extracted (i.e., TST =
testing, RHB = rehabilitation, SPS = SPS construction, INV =
inventory, and CALC = calculated)

PENETRATION 39.2F

Penetration at 39.2 °F

PENETRATION 39.2F
 SOURCE

LTPP module from which penetration at 39.2 °F was extracted
(i.e., TST = testing, RHB = rehabilitation, SPS = SPS construction,
INV = inventory, and CALC = calculated)

PENETRATION 77F

Penetration at 77 °F

PENETRATION 77F
SOURCE

LTPP module from which penetration at 77 °F was extracted
(i.e., TST = testing, RHB = rehabilitation, SPS = SPS construction,
INV = inventory, and CALC = calculated)

PENETRATION 115F

Penetration at 115 °F
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PENETRATION 115F
 SOURCE

LTPP module from which penetration at 115 °F was extracted (i.e.,
TST = testing, RHB = rehabilitation, SPS = SPS construction, INV =
inventory, and CALC = calculated)

ABSOLUTE VISCOSITY

Absolute viscosity at 140 °F (poises)

ABSOLUTE_VISCOSITY
 SOURCE

LTPP module from which absolute viscosity was extracted (i.e., TST =
testing, RHB = rehabilitation, SPS = SPS construction, INV =
inventory, and CALC = calculated)

KINEMATIC VISCOSITY

Kinematic viscosity at 275 °F (centistokes)

KINEMATIC VISCOSITY
SOURCE

LTPP module from which kinematic viscosity was extracted (i.e.,
TST = testing, RHB = rehabilitation, SPS = SPS construction, INV =
inventory, and CALC = calculated)

VMA Voids in mineral aggregate
LTPP module from which VMA was extracted (i.e., TST = testing,
RHB = rehabilitation, SPS = SPS construction, INV = inventory, and
VMA SOURCE CALC = calculated)
VFA Voids filled with asphalt
LTPP module from which VFA was extracted (i.e., TST = testing,
RHB = rehabilitation, SPS = SPS construction, INV = inventory, and
VFA SOURCE CALC = calculated)
AIR VOID
SAMPLE DATE Date of air void sampling (if field-aged sample)
AIR VOIDS Percent air voids

AIR VOIDS SOURCE

LTPP module from which air voids was extracted (i.e., TST = testing,
RHB = rehabilitation, SPS = SPS construction, INV = inventory, and
CALC = calculated)

GMB

Bulk specific gravity of the mix

GMB SOURCE

LTPP module from which bulk specific gravity was extracted ((i.e.,
TST = testing, RHB = rehabilitation, SPS = SPS construction, INV =
inventory, and CALC = calculated)

GMM

Maximum specific gravity

GMM SOURCE

LTPP module from which maximum specific gravity was extracted
(i.e., TST = testing, RHB = rehabilitation, SPS = SPS construction,
INV = inventory, and CALC = calculated)

MR SAMPLE DATE

Date of resilient modulus sampling (if field-aged sample)

MR 5

Resilient modulus at 5 °C

MR 25 Resilient modulus at 25 °C
MR 40 Resilient modulus at 40 °C

LTPP module from which resilient modulus was extracted

(i.e., TST = testing, RHB = rehabilitation, SPS = SPS construction,
MR SOURCE INV = inventory, and CALC = calculated)

BINDER GRADE

Binder grade information (only populated for RTFO data)

°C =(°F-32)/1.8

35




For GPS projects, each layer is specific to one test section. As such, the data utilized from the
LTPP database are section-specific. However, for SPS projects, the same materials were used in
the construction of many test sections on one SPS project. Inputs for these SPS projects were
computed as the average of the layer over the entire SPS project. Therefore, |E*| estimates were
developed for each PROJECT LAYER CODE (as reported in the TST LOS5B table) and
reported as project-level data.?9 For SPS projects that were linked to GPS test sections, priority

was given to data from the SPS project. If those data were not available, the SPS records were
populated with data from the corresponding GPS test section.

In some cases, the AC layers were sampled and tested multiple times and at varying ages. If test
results were available from multiple sample dates, |E*| was computed for each sample date. The
corresponding age was calculated and included with the data.

V, for field-aged samples are not directly available in the LTPP database; therefore, the
following equation was used to calculate air voids from bulk- and maximum-specific gravities
measured from field samples:

a

4 =(1——Gmb]*100%
G

mm (14)
Where:
V, = Airvoids (percent).
G.» = Bulk specific gravity.
Gum = Maximum specific gravity.
In addition, because VFA information is not available directly in the LTPP database, the
following equation was used to compute VFA:

V

VFA :(1— < j*lOO%
VMA (15)
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4.0 EVALUATION OF |E*| PREDICTIVE MODELS

ANNSs are used to solve problems in the asphalt pavement field with the primary application
being the backcalculation of pavement layer moduli from falling weight deflectometer
measurements.“' > This method has also been applied successfully to assess the roughness
progression in flexible pavements and to analyze the surface wave data obtained from the
nondestructive testing of asphalt pavements.***>’ An often cited drawback of these approaches is
their inability to extrapolate when a situation arises that is beyond that used to train the ANNs.
To overcome this shortcoming, it is important that the dataset used to train the ANNs covers the
entire range of conditions expected to be encountered during use. The objective of this study is to
show that ANN modeling techniques can be applied to predict |E*| values of AC to a higher
degree of accuracy than currently available models using the same input parameters.

4.1 ANN STRUCTURE USED IN THIS STUDY

A preliminary study was conducted to determine the feasibility and predictability of the ANN
modeling technique relative to the existing models. This feasibility study was first conducted
based on |G* because more closed-form models exist that use this parameter as their primary
input parameter. The ANN models used in this preliminary study are not the final models
suggested by the research team, but they are similar in form and validation. To ensure full
coverage of the expected conditions, the most recent Witczak database with available measured
|G*| data and a portion of the dataset obtained at NCSU with support from the NCDOT were
utilized as the TP-62 training database. Also, appropriate portions of the FHWA mobile trailer
database and the WRI database (from the Kansas and Nevada sites) were considered the AMPT
training database. A combination of the AMPT and TP-62 databases has been used to train the
network after investigations, which are summarized in appendix C of this report.

The ANN model developed herein contains a mapping ANN architecture and is based on
supervised learning. In the developed network, the learning method is a feed forward back
propagation, which is one of the best known types of ANN. The sigmoidal function was chosen
as the transfer function. The three-layer network was selected as the best network configuration.
The first two layers consist of 12—14 nodes based on the different cases studied for the
development of the models.

To evaluate the goodness of fit in arithmetic scale, |E*| is considered to be the dependent
variable, and the error is given as follows:

Sum of Squared Error, SSE = ZUE *

normal "~

_|>x<

1200 - T (16)

predicted

Sy is defined as the standard deviation of the measured |E*| values. To evaluate the goodness of
fit in logarithmic scale, the dependent variable is the log (|J£*|), and the error is as follows:

Sum of Squared Error, SSE,, = Z[log (|E *

—log(|E*

predicted )

measured )T (17)
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Sy is defined as the standard deviation of the measured log (|E£*|) values. The standard error is
defined as follows:

SSE

Standard Error, Se =
n—1 (18)

Where:

n = Number of observations.
4.2 EVALUATION OF BINDER |G*-BASED MODELS

A literature review of current versions of the modified Witczak and Hirsch models showed that
these two models have high goodness-of-fit statistics for their original training databases of
7,400 and 206 data points, respectively. (See references 11, 5, 12, 6, 7, and 13.) The literature
purports high correlation coefficients and small errors of R*=0.80 and Se/Sy = 0.45 in arithmetic
scale, R?=0.90 and Se/Sy = 0.32 in logarithmic scale for the modified Witczak model, and R* =
0.98 in logarithmic scale for the Hirsch model. The developers of the Hirsch model report only
the logarithmic-based R? value.

These results demonstrate that the goodness-of-fit for each model is dependent on the number of
observations or the width of the range of the different variables considered in the development of
each model. The deterioration of the statistical parameters when these models are applied to
some expanded and independent databases is not entirely unexpected given the nature of
regression models. Additional insight is gained by examining line-of-equality (LOE) plots for
each of the models in both arithmetic and logarithmic scales.

In this section, the existing models (including the modified Witczak, Hirsch, and Al-Khateeb
models) are evaluated along with the two ANNs using the verification databases shown in

figure 7 through figure 16. Also, figure 17 through figure 28 show predictions of the |E*| values
from the verification databases using the different models. The first observation is that the
Al-Khateeb model exhibits a significant bias (i.e., a power trend between the predicted |E*| and
the measured |E*| values) in all the predictions. This finding is not entirely unexpected given the
limited database used in calibrating the model. However, due to the bias relative to the other two
existing models, it was decided that this model would be eliminated from consideration in any
future analysis. It should be noted that the scales in figure 7 through figure 28 vary to provide the
greatest clarity in the data.

The Hirsch model behaves in a reasonable fashion, although it exhibits undesirable behavior at
low |E*| values in the LOE graphs shown in figure 9 and figure 10. When the prediction is good,
the expectation is that a group of data points following the LOE with an oval shape in the LOE
graph would be seen. However, the Hirsch predictions shown in figure 9 and figure 10 exhibit a
horizontal pattern amplified in the bottom left side of the log-log LOE graph. This undesirable
pattern in the Hirsch model predictions is related to the insensitivity of the model and its inability
to distinguish the performance differences among different mixtures for a given set of
environmental and other conditions.*® This issue is discussed later in this section.
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The developers of the Hirsch model note that during initial development, substantial errors
occurred when predictions were made at extremely high and low modulus values. The authors of
the model attempted to correct this issue in subsequent efforts by expanding the calibration
database to include 15.8 and 129.2 °F (-9 and 54 °C) data.) However, it is unclear if such efforts
succeeded in reducing potential prediction errors because the authors did not have access to
and/or show a large enough verification database. Regardless of this potential model
shortcoming, predictions were made for the complete range of temperatures that a typical user is
likely to apply to the model (i.e., 14 to 129.2 °F (-10 to 54 °C)). For an independent and
expanded database, it appears that the Hirsch model developers, with their available dataset,
were not able to completely address the original shortcomings of their model because plateau
areas appear at the high and low modulus values, as shown in figure 9, figure 10, figure 19,
figure 20, figure 23, figure 24, figure 27, and figure 28. The undesirable pattern in the Hirsch
model predictions at low modulus values (high temperatures) is related to the insensitivity of the
model to the changes in volumetric parameters. Errors at the low temperature of 14 °F (-10 °C)
(high modulus values) are caused by the model having a limited modulus of approximately
3,500,000 psi (24,115,000 kPa) even though values higher than this are often measured in the
laboratory at 14 °F (-10 °C). These drawbacks raise concerns over the use of the Hirsch model
for the prediction of modulus values over the complete range needed for the MEPDG input.
However, it will be shown later that the parameters on which this model is based seem to be
promising and adequate for consideration in predicting the |E*| values using the ANN model.

The modified Witczak model shows a larger scatter than the ANN models. The performance of
the modified Witczak model in all the databases presented in figure 7 and figure 8 indicates that
this model tends to overestimate the measured |E*| values over the entire range, particularly at
the extreme modulus values. It is believed that this effect is due to the aforementioned use of
inappropriate |G*| values at temperatures less than or equal to 39.9 °F (4.4 °C) (overestimation at
high modulus values) and the use of |E*| values at higher than recommended strain levels
(overestimation at low modulus values). The modified Witczak predictions also tend to have a
bias at high temperatures relating to insensitivity to volumetric changes and the inability of this
model to clearly capture these differences.*®

The prediction of the Citgo |E*| data is presented in figure 25 through figure 28. It should be
noted that the binder data at 39.2 °F (4 °C) are extrapolated from the CAM model more so than
other binders in the database. For predictions of both aging conditions, the model inputs are the
same, which causes the slight horizontal pattern. For this dataset, figure 25 through figure 28
show that the ANN-based |E*| predictions are more erratic compared to the modified Witczak
and Hirsch models. It is believed that this dataset was used in the calibration of the Hirsch
model. As a result, it is somewhat unfair to compare the predictions using this model. After a
careful exploration of the training dataset, it was found that mixtures that have similar |G*|
values at 39.2 °F (4 °C) and have similar volumetric properties also have higher measured |E*|
values than the Citgo mixtures. It was also found that these similar mixtures are coarse
gradations, whereas the Citgo mixtures are finely graded. For this reason, the ANN models are
capable of finding differences between these mixtures. However, including only the modified
Witczak volumetric parameters causes model confusion at the low modulus values and, hence,
the observed variability. The reason this variability shows so clearly with the Citgo mixture is
likely due to the close similarity of it with mixtures in the training database. To address this issue
thoroughly, new parameters that better represent the relative effects of the gradation and
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volumetric properties may need to be identified. This effort is beyond the scope of this current
project.
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Figure 7. Graph. Prediction of the processed Witczak, FHWA I, FHWA II, NCDOT I,
NCDOT II, WRI, and Citgo databases using the modified Witczak in arithmetic scale.
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Figure 8. Graph. Prediction of the processed Witczak, FHWA I, FHWA II, NCDOT I,
NCDOT I1, WRI, and Citgo databases using the modified Witczak in logarithmic scale.
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Figure 9. Graph. Prediction of the processed Witczak, FHWA I, FHWA II, NCDOT I,
NCDOT II, WRI, and Citgo databases using the Hirsch model in arithmetic scale.
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Figure 10. Graph. Prediction of the processed Witczak, FHWA I, FHWA II, NCDOT I,
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Figure 11. Graph. Prediction of the processed Witczak, FHWA I, FHWA II, NCDOT I,
NCDOT II, WRI, and Citgo databases using the Al-Khateeb model in arithmetic scale.
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Figure 17. Graph. Predicted moduli using G-GR pANN and modified Witczak models for
the FHWA II database in arithmetic scale.
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Figure 18. Graph. Predicted moduli using G-GR pANN and modified Witczak models for
the FHWA II database in logarithmic scale.
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Figure 19. Graph. Predicted moduli using G-V pANN and Hirsch models for the FHWA 1I
database in arithmetic scale.
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Figure 20. Graph. Predicted moduli using G-V pANN and Hirsch models for the FHWA 11
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Figure 21. Graph. Predicted moduli using G-GR pANN and modified Witczak models for
the NCDOT II database in arithmetic scale.
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Figure 22. Graph. Predicted moduli using G-GR pANN and modified Witczak models for
the NCDOT II database in logarithmic scale.
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Figure 23. Graph. Predicted moduli using G-V pANN and Hirsch models for the
NCDOT II database in arithmetic scale.
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Figure 24. Graph. Predicted moduli using G-V pANN and Hirsch models for the
NCDOT II database in logarithmic scale.
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Figure 25. Graph. Predicted moduli using G-GR pANN and modified Witczak models for
the Citgo database in arithmetic scale.
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Figure 26. Graph. Predicted moduli using G-GR pANN and modified Witczak models for
the Citgo database in logarithmic scale.
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Figure 27. Graph. Predicted moduli using G-V pANN and Hirsch models for the Citgo
database in arithmetic scale.
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Figure 28. Graph. Predicted moduli using G-V pANN and Hirsch models for the Citgo
database in logarithmic scale.
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The feasibility of calibrating an ANN using the Hirsch parameters and the modified Witczak
model parameters has been investigated. Table 19 shows that the key difference in input
requirements for these two models is the lack of gradation parameters for the Hirsch model. Note
the naming convention for the ANN models followed in this portion of the report. The first letter
group represents the major binder property used (“G” for |G* and “Visc” for viscosity). The
second letter group signifies whether gradation parameters were used (“GR” when they are
included and “V” when only volumetric properties are used). Finally, the designation pANN
denotes that the model is an ANN model but that it is used only for the pilot studies. The
finalized ANN models developed in this project have no prefix before ANN. Due to the issues
discussed in appendix C regarding AMPT and TP-62 measured moduli, both types of data were
used in the calibration of the ANN model. The calibration results for this model are shown in
figure 13 to figure 16, and the verification data are shown in figure 17 to figure 28.

Table 19. Description of |G*|-based ANN models.
Parameters Verification
ANN Model | Used to Train | Training Database Database
G|

G-GR pANN | P,

FHWA I

5 Processed Witczak' ;Ié\ggrl IH
4 NCDOT I

|G

G-V pANN VMA (percent)
VFA (percent)
"Portions of the Witczak database (mixtures 1-135) and also some mixtures from the
remaining portion that do not have reliable measurements (very high |E* measurements)
were omitted. The portions of the Witczak database used for developing |G *-based models
are the ones that have measured |G*| values.

For the FHWA 11 dataset shown in figure 17 and figure 18, the G-GR pANN model shows

more scatter than the predictions made from the G-V pANN model and the Hirsch model.
Because none of the FHWA II mixtures contain data at 14 °F (-10 °C) (|E£* measurement based
on AMPT protocol), there is no observed bias in the Hirsch model shown in figure 19 and figure
20. For the NCDOT II database that contains low temperature data (figure 21 through figure 24),
the bias in the Hirsch model is clear. Also, the G-GR pANN and G-V pANN models are

similar, with the G-GR pANN model showing a slight improvement both visually and from

the statistical measurements.

With the exception of the Citgo dataset, which was discussed previously with regard to the
Witczak-based ANNS, the |G *|-based ANN model appears to yield better predictions than the
Hirsch and modified Witczak models. The overall performance of this |G*|-based ANN model
shows that considering the VMA and VFA parameters together with the t-T dependent binder
rheological parameter provides more promising predictions for both the training and verification
databases than the parameters used in the modified Witczak model.
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The findings from figure 7 to figure 28 are as follows:

e The Al-Khateeb model displays a significant bias and, therefore, is removed from
future analysis.

e The Hirsch model performs reasonably well, although the horizontal pattern shown in
the LOE graph indicates problems associated with the insensitivity of the model to the
input variables.

e The pANN models show the least scatter with the least bias overall.

e The pANN models trained with the Hirsch model parameters should yield predictions as
good as if not better than the models trained with the modified Witczak parameters. The
reason for this was not explored in detail.

e The primary advantage of ANN modeling over statistical regression techniques is that
the functional form of the relationship is not needed a priori. Considering that many
variables affect |E*| values and their interaction, the ANN technique may capture
complicated nonlinear relationships between |E*| and other mixture variables better than
regression analysis.

4.3 VISCOSITY-BASED ANN

Two viscosity-based ANN models with two different sets of parameters were developed (see
table 20). The performance of each model is shown in figure 29 through figure 40 for both
training and verification databases. Like the |G*-based ANN models, the difference in these two
viscosity-based ANN models are related to the input parameters used for training. In the first
ANN, viscosity-gradation (Visc-GR) pANN, the parameters suggested by the original Witczak
model are adopted, whereas in the second ANN (viscosity-volumetric (Visc-V) pANN), the
Hirsch model parameters are chosen, with the exception that frequency and viscosity are chosen
instead of |G*|. Results of the training for the two models are shown in figure 29 to figure 32.
Figure 33 to figure 40 show the verification dataset. Note that some of the points used in the
training data have also been used in calibrating the original Witczak model. These points
represent only a very small portion of the total data shown in figure 29 to figure 32. Results of
the independent model verification process are shown for different databases in figure 33 to
figure 40. Through these figures, it appears that the ANN models perform better than the original
Witczak model. It is also evident that although the Visc-GR pANN model performs better in
training, the Visc-V pANN model is better for model verification. Based on these findings, it
appears that, like the |G*|-based models, removing gradation parameters from the necessary
inputs yielded improved and more stable modulus predictions.
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Table 20. Description of viscosity-based ANN models.

Parameters Training Verification
ANN Model Used to Train Database Database
f (hertz)
n(10° P)
Va
Visc-GR pANN g’j’”f
P FHWA I1
P. Witczak
NCDOT I

FHWA II
NCDOT II

P200

f (hertz)
. n(10°P)
Visc-V pANN VMA (percent)

VFA (percent)

1 Pas=10P
"Portions of the Witczak database that do not have reliable measurements
(high |E*| measurements) were neglected.

8.E+06
® Visc-GR pANN
—LOE
% 6.E+06 |
2 e °
x_ L) % ' [
1T] (]
—4.E+06 | e o
o °
i) ®
k] 02 PR
©2E+06 [ & - O
a o Visc-GR pANN
R?=0.90, Se/Sy=0.32
0.E+00 ‘

0.E+00 2.E+06 4 E+06 6.E+06 8.E+06

Measured |[E*| (psi)
1 psi = 6.86 kPa

Figure 29. Graph. Prediction of training data containing Witczak, FHWA I, and NCDOT I
databases using Visc-GR pANN in arithmetic scale.
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1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08
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Figure 30. Graph. Prediction of training data containing Witczak, FHWA I, and NCDOT I
databases using Visc-GR pANN in logarithmic scale.
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Figure 31. Graph. Prediction of training data containing Witczak, FHWA I, and NCDOT I
databases using Visc-V pANN in arithmetic scale.
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Figure 32. Graph. Prediction of training data containing Witczak, FHWA I, and NCDOT I
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databases using Visc-V pANN in logarithmic scale.
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Figure 33. Graph. Predicted moduli using Visc-GR pANN model for the FHWA 11

Measured |[E*| (psi)

database in arithmetic scale.
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Figure 34. Graph. Predicted moduli using Visc-GR pANN model for the FHWA 11
database in logarithmic scale.
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Figure 35. Graph. Predicted moduli using Visc-V pANN model for the FHWA II database
in arithmetic scale.
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Figure 36. Graph. Predicted moduli using Visc-V pANN model for the FHWA II database

in logarithmic scale.
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Figure 37. Graph. Predicted moduli using Visc-GR pANN model for the NCDOT II

database in arithmetic scale.
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Figure 38. Graph. Predicted moduli using Visc-GR pANN model for the NCDOT II
database in logarithmic scale.
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Figure 39. Graph. Predicted moduli using Visc-V pANN model for the NCDOT II database
in arithmetic scale.
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Figure 40. Graph. Predicted moduli using Visc-V pANN model for the NCDOT II database
in logarithmic scale.
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5.0 ANN MODELS FOR POPULATING THE LTPP DATABASE

Three ANN models have been developed for populating the LTPP database sections. These
models are differentiated by the following primary input parameters: (1) the Mz model uses the
resilient modulus, (2) the VV model uses the binder viscosity, and (3) the |G*-based (GV) model
uses the binder shear modulus. The subsequent sections provide a description of each model
along with the final verification plots and statistics. The models in this chapter use normalized
inputs, whereas those discussed in the previous section use nonnormalized inputs.

The term normalizing a vector often refers to changing the magnitude of an element by dividing
it by a norm of the vector. For neural networks, this definition often means changing the scale of
a vector by the minimum value and the range of the vector so that all the components are
between 0 and 1 or 1 and -1. Linear and uniform normalizations are the common methods used
for this purpose. In some cases, such as lab- and field-measured data used to develop the ANN
models in this study, linear normalization seems to be more meaningful when no specific
distributions of the data are known or present. In addition to normal distribution, a Gaussian
normalization (based on the mean and standard deviation of the data for each parameter) could
be performed. In some cases, these statistics could be used to get rid of outliers (e.g., data points
outside of the three standard deviations). Although such types of nonlinear normalization and
related procedures may be useful in some applications (e.g., when the measurement range is
meant to be normally distributed or distributed with some statistical uniformity), for the type of
engineering applications where the data represent different conditions, it is not possible to find a
statistical distribution of those input values. For example, if temperature is an input and

different datasets represent different discrete values/ranges, then it is not useful to find a mean
temperature value and its standard deviation to normalize the data. In this study, the linear model
was adopted because of its simplicity. After applying this normalization (scaling) scheme to the
data and developing the ANN models, it was found that the predictions were acceptable, and
there was no further investigation into the need of nonlinear normalization. This issue is one that
possibly warrants future study.

The decision to utilize normalized input-based ANN models was not finalized at the time

of the study presented in the previous chapter. After deciding to use normalized input-based
ANN models, the pilot analysis was not redone because the normalization only improved

the predictability and thus did not change the final conclusions of the pilot study. Based on
these fitting statistics and on engineering judgment, the models were ranked to develop a
decision tree so that a user can determine which ANN model is best suited to a specific set of
input parameters.

Due to differences in the required inputs for each model, different subsets of the entire database
were used in training and verification. The total number of points used for each model, along
with a summary of the required input parameters, is provided in table 21. Of the total available
points for each model, 90 percent were randomly selected for the purpose of training the
networks, and 10 percent were used for verification. The Witczak database was used for
calibrating the VV ANN model, except that the data at the temperatures equal to or less than

32 ° F (0 °C) were not used because of unacceptably high |E*| values. It should be mentioned
that the GV and |G *-based model using inconsistent aged binder data of PAV- and RTFO-aging
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conditions (GV-PAR) models, like the VV and viscosity-based model using specification grade

of the asphalt binder (VV-grade) models, represent the same trained network, but they
are identified by different terms due to the binder values used in each case. In the GV-PAR

model, the binder values are based on two aging conditions, PAV and RTFO. In the VV-grade

model, the values of A and VTS are chosen, as recommended in MEPDG, based on the

specification grade of the asphalt binder. Sections using this model have less than two viscosity

measurements, but the VMA, VFA, and binder grade values are available. Descriptions of the

binder analysis necessary for using these models are given in appendices A and B.

All of the ANN models developed herein contain a mapping ANN architecture and are based on

supervised learning. In the developed network, the learning method used is a feed forward back

propagation, and the sigmoidal function is the transfer function. The three-layer network with
two hidden layers was selected as the best configuration. The number of nodes in each layer

differs according to the selected model (see table 21). These node numbers were determined after
a systematic study of each model. In each case, the network follows the same basic structure that

is schematically illustrated in figure 41. A more formal mathematical representation for each of

these models is given in appendix D.

Table 21. Parameters and number of nodes used in developed ANN models.

Parameters Used to Train ANN Models
Mz at5, 25, Shift Number

ANN and 40 °C Factor Jr | Viscosity VMA VFA |G*| | of Data | Number

Model (MPa) (aq, a2, a3) | (Hz) (109 P) (Percent) | (Percent) | (psi) | Points | of Nodes
My v v 11,730 12
\AY% v v v v 14,682 14
GV v v v 12,907 12
GV-PAR v v v 12,907 12
VV-grade v v v v 14,682 14
°C = (°F-32)/1.8
1 Pas=10P

1 psi = 6.86 kPa

Note: Blank cells indicate that the parameter was not used to train the model.
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Figure 41. Illustration. Network structure used for training the ANN models.
5.1 Mrx ANN MODEL

The 1993 AASHTO Guide for Design of Pavement Structures employs My as the material
property representing the stiffness characteristics of layer materials.*” Mpis defined as the ratio
between applied stress (0,) and recoverable strain (&) as follows:

: (19)

Several testing standards have been developed for the determination of My of AC using the
indirect tensile (IDT) test method (American Society for Testing and Materials (ASTM) D4123-
82, NCHRP 1-28, State Highway Research Program (SHRP) P-07, and NCHRP 1-28A).

(See references 28—-31.) In light of these facts, the LTPP database has stored My as the primary
measured mixture stiffness term for many of the layers. Due to the industry’s transition from My
to |[E*|, a significant amount of My data that have been collected in State highway agencies may
become obsolete unless the My values can be converted to |E*| values. The NCSU research team
successfully developed a method to make this conversion using an ANN-based methodology to
predict the |[E*| values at multiple temperatures and frequencies when only the My values at three
temperatures are available.

The difficulty in performing this conversion stems from the fact that My provides a snapshot of
the material behavior under one loading history (i.e., 0.1-s haversine loading followed by a 0.9-s
rest period) at different testing temperatures (normally three temperatures at 41, 77, and 104 °F
(5, 25, and 40 °C)). Zhang explored the possibility of characterizing the viscoelastic properties
obtained from Mp tests using Fourier analysis.(32) It was concluded that this type of analysis is
impractical due to the difficulty in solving a large number of variables and the limited range of
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results, which provided little information other than My data. Another challenge is that Fourier
analysis requires a loading and deformation history in order to fit, which most databases do not
contain. Because an analytical method is not feasible, any attempt to predict |[E*| from Mk is, at
best, empirical in nature.

One difficulty in any empirical model is acquiring a database large enough to represent the
range of possible inputs. Because a large database containing both My and |E*| does not exist,
a theoretical approach has been developed based on LVE principles. The resulting forward
model is used along with the mixtures in the Witczak database to develop the ANN model
training database.

5.1.1 Forward Modeling

Developing a database with |E* and My values can be a time-consuming task if the properties
are measured in the laboratory, especially for a database comprehensive enough to encompass a
large range of mixture variables such as binders, gradations, NMSA, VMA, VFA, air voids, etc.
The proposed method was to use a comprehensive |E*| database and populate the database with
Mp values by using LVE principles.

Mp can be calculated by several different methods, including ASTM D4123-82, NCHRP 1-28
method, the SHRP P07 protocol, AASHTO TP31-96 standard, or the Roque and Buttlar
equation 17, which accounts for the bulging effects of the specimen. (See references 28, 29, 30,
33, and 34.) The NCHRP 1-28 elastic solutions are used in this report.*” The equations for
calculating My and Poisson’s ratio are as follows:

P
M, =w(k1 —k,v)

(20)
ky+k (V/U)
V——=
k,+k, (V/U) (21)
Where:
Mg = Resilient modulus (MPa).
v = Poisson’s ratio.
P = Applied load (N).
U = Recoverable horizontal displacement (m).
V = Recoverable vertical displacement (m).
ki, ko, ks, ks = Constants.
Equations 20 and 21 can be combined to yield the following relationship:
ky+k (VU
M, = £ k —k, ¢
Ud k,+k,(V/U) (22)

These equations are based on the linear elastic solutions developed by Hondros after accounting
for the nonuniform stress and strain distributions in the IDT specimen (see figure 42).%9 The
constants in equations 20 and 21 are listed in table 22. Note that these constants are different
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from the constants for |E*| because the coefficients for My are derived using linear elastic theory,
whereas those for |E*| are derived using LVE theory.

Table 22. Geometry coefficients.

IDT |E¥| B B2 71 V2
-0.0134| -0.0042 0.0037 0.0116

Mp k3 k4 kl k2
-0.0006710.000209 | -0.00018|0.000578

- X,

Sy

Figure 42. Illustration. Stress distribution in the IDT specimen subjected to a strip load.

For linear elastic materials, the stress-strain relationship is represented by the generalized

Hooke’s law. It is assumed that the rectangular coordinate of x; is in the horizontal direction, x;
is in the vertical direction, and x3 is in the depth direction of the IDT specimen. Two strains that
are of interest are ¢ ;; and ¢ ;. According to the generalized Hooke’s law, these two strains are

related to stresses as follows:

1
€ :E(Gn —Vvo,,)=D(0,, —Vvo,,)

1
&y :E(O-zz —vo,,) =D(c,, —vo,))

Where:

E = Young’s modulus.
D = Compliance.
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Application of the elastic-viscoelastic correspondence principle to these linear elastic solutions
results in the following LVE stress-strain relationships:

t
0
€ :_!D(I_T)E[O-n_V(t_T)Gzz]dT (25)
t
€n = J.D(t _T)i[o-zz —v(t—1)o,,]dr
o ot (26)
The Hondros equations used to calculate the resulting stresses in the horizontal and vertical
directions are as follows:
2P
Oon = [f(x)—g(x)]
mad (27)
2P
Op=- L/ (x)+g(x)]
rad (28)
1-x*/R*)sin 2«
S(x)= (2 2 ) yp—
1+(2x°/R")cos2a+x" /R (29)
L 1=x*/R?
gx)=tan | ———tana
1+x° /R (30)
Where:
R = Radius of specimen (m).
x = Horizontal distance from center of specimen (m).
a = Radial angle (radians).
Combining equation 27 through equation 30 results in the following expressions for the
horizontal and vertical strains:
by (i) = —— [ D= 1) LA 1) - g (0 + V(= D) () + g e
e rad <, ot & & (31)
s () =~ [ D=0 L AL () + g+ V(=D () - g}
n rad 3, ot & & (32)
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The displacements at the gauge length can be calculated by integrating the nonuniform strains in
equations 31 and 32 along the gauge length (i.e., -/ to +/) as follows:

l

U= &,(x,t)dx
! (33)
V= Jszz(xz,t)dx
’ (34)
or
U= Lja(z P j[f(x) ~ g(x) v +v(t — r)j [/ (x)+g(x)]dx |dr
rad <, or\ 7, % (35)
y - LjD(z P —j [ () + g(x)]dx +v (1 - r)f [g(x)~ f(0)]dx |dr
rrad < or{ 7, % (36)
For the gauge length of 2.0 inches (50.8 mm), equations 35 and 36 reduce to the following:
2 ¢ oP
U_%‘([D(t—‘[)g{]/l+V(I—T)7/2}d2' (37)
2 oP
V—%.([D(Z—T)E{ﬂl +V(f—T)ﬁ2}dT (38)

Where the values of 31, S, 71, and ¥, are shown in table 22. Equations 37 and 38 require two
time-dependent material properties (i.e., creep compliance and Poisson’s ratio). It has been
proven that the creep compliance of AC can be predicted from |E*| using theoretical
relationships.®® In this study, the following approach is used to convert the |E*| mastercurve
to the creep compliance.

The complex modulus, E*, is represented in equation 39 as follows:

E*=E'+iE" (39)
Where:
E' = Storage modulus = |E*| cosine ¢.
E" = Loss modulus = |E*| sine ¢.
¢ = Phase angle.
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The storage modulus, £, can be represented in terms of a Prony series in equation 40 as follows:

n 2 2
o p’E
E(w)=E +y i~ 40
(@,)=E, ;wfpfﬂ (40)

Where:
E., = Elastic modulus (MPa).
®, = Angular reduced frequency.
E; = Modulus of the ith Maxwell element.
p;, = Relaxation time of the i Maxwell element.

An exact conversion to D(¢) can be obtained by solving the following equations:

[4)(D} =B . or 4yD;= By

(41)
A =E (l_e—(t/;/’/))+i plE (e_(tk/pi) _e—(fk/Pf)) D ET,
v N i=1 P _Tj l ’ (42)
B, =1 —[Ew +2Eie‘(w>)/(ﬁ:m +ZE1)
i=1 i=l (43)
Where:
Ay = Matrix element in the kth row and jth column of matrix A4.
Br = Vector element in the kth row of vector B.
E. = Equilibrium modulus (MPa).
E; = Modulus of the ith Maxwell element.
o = Relaxation time of the ith Maxwell element determined a priori.
7, = Retardation time of the jth Voigt element determined a priori.
tr = Time of interest.
m = Number of Prony coefficients.

By solving for compliance of column j of matrix A (D;), the Prony series representation for D()
can be determined. Equation 42 does not show a solution for p; = z; because the error increases
when such a case exists.**”

The second time-dependent material property in equation 37 is Poisson’s ratio. The time-
dependent nature of Poisson’s ratio has been reported.m) Poisson’s ratio values for the S12.5C
mixture are shown in figure 43 against the reduced time to show a typical trend.
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Figure 43. Graph. Poisson’s ratio versus reduced time for S12.5C.

The Poisson’s ratio values are calculated from equation 21 using the data from the IDT |E*| test.
As can be seen in figure 43, a large sample-to-sample variability is evident in Poisson’s ratio
values. Another problem with Poisson’s ratio is that equation 25 is difficult to solve because two
time-dependent properties are inherent in the equation. If Poisson’s ratio in equations 25 and 26
is assumed to be constant, the two equations reduce to the following:

U:2(71+V72)

jDG—ﬂQBdT
rad 3 or

(44)

V= 2P +vB) j-D(Z—T)a—PdT
rad or (45)

In figure 43, the measured Poisson’s ratio exceeds the theoretical limits of zero to 0.5. A high
Poisson’s ratio occurs at large reduced times when the temperature is high and/or the loading
time is long. Some Poisson’s ratios are higher than 0.5, indicating that damage has occurred in
the specimen.(zg’3 ® The biggest challenge in determining Poisson’s ratio in the IDT test is to
induce a large enough horizontal displacement to overcome the electronic noise in the testing
system without causing damage in the specimen. Mirza et al. provide a method to evaluate the
quality of the data using a deflection ratio.*”

The effect on Mz when a constant Poisson’s ratio is assumed is evaluated by using three
Poisson’s ratios at each temperature of each mixture and calculating the percentage of difference
in the predicted My values. The Poisson’s ratio values used in this comparison are 0.15, 0.2, and
0.25 for 41 °F (5 °C); 0.25, 0.3, and 0.35 for 77 °F (25 °C); and 0.4, 0.45, and 0.5 for 104 °F

(40 °C). It was found that the difference in My values is negligible when Poisson’s ratio, which
is used to predict the displacements, is used to calculate M. A more indepth analysis of
equations 20 and 37 along with the geometry coefficients in these equations, which are shown in
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table 22 (i.e., ki, k2, 71, and 7;), reveals that the effect of change in Poisson’s ratio on the term
(k1-k>v) in the numerator of equation 20 is about the same as that on the horizontal displacement
calculated from equation 37, which appears in the denominator of equation 20. Therefore, it

1s concluded that the effect of Poisson’s ratio on Mpy calculation is minimal. Vinson draws a
similar conclusion that a Poisson’s ratio of 0.15 to 0.45 does not affect Mz much based on a
theoretical finite-element analysis.(40’28) For the remainder of this report, equation 44 is used,
with constant Poisson’s ratios of 0.2, 0.35, and 0.45 for 41 °F (5 °C), 77 °F (25 °C), and 104 °F
(40 °C), respectively.

Because the numerical integration of equation 44 requires calculating all the previous time steps
to arrive at the current time step, calculation times can grow exponentially.“" To reduce the
calculation time, the state variable approach described in equation 46 through equation 48 is used
in this study.

tu+l
do -
n+l n+l n+l n+l
e = ID(t i —‘L’)Edz':no+ —Zni+
0 i=1

(46)
Where:
n+l C s °
n" =(D,+) D)o -0o')
Zl 47)
_At _ A
77in+1 —e 7, 77in t+e 2z, [O_t'”l _ O_t” ]Dl (48)

Figure 44 through figure 47 show the results of predicted versus measured values using a LOE
graph. For both mixtures, the predicted and measured My values are in good agreement,
suggesting that the proposed approach based on the theory of linear viscoelasticity using the IDT
|E*| can provide a reasonable estimate of My of AC.
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Figure 44. Graph. Comparison of predicted and measured Mg values for S12.5C mixture.
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Figure 45. Graph. Comparison of predicted and measured My values for S12.5CM mixture.
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Figure 46. Graph. Comparison of predicted and measured My values for S12.5FE mixture.
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Figure 47. Graph. Comparison of predicted and measured My values for B25.0C mixture.
5.1.2 ANN Model |[E*| Backcalculation

The characterization and verification results of the Mz ANN model are shown in figure 48
through figure 51. In figure 49, the results of characterization are shown in logarithmic space,
and the model displays excellent fitting statistics with a high R* = 0.98 (0.90 in arithmetic space)
and a low Se/Sy = 0.15 (0.32 in arithmetic space). The verification plots are shown in figure 50
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and figure 51, and the model is found to predict the moduli values with statistics similar to those
from the calibration dataset.

6.E+04
e MR Model
- —LOE
©
o ®
= 4.E+04 | o
fu < Ve
© e .. ® °®
\ MO
§2.E+04 | —ARIT A
o
o
Q. 2
K R°=0.90, Se/Sy=0.32
0.E+00 ‘
0.E+00 2.E+04 4 E+04 6.E+04
Measured |[E*| (MPa)

1 psi=6.86 kPa

Figure 48. Graph. Mz ANN model using 90 percent of randomly selected data as a training
set in arithmetic scale.
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Figure 49. Graph. Mz ANN model using 90 percent of randomly selected data as a training
set in logarithmic scale.
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Figure 50. Graph. Mz ANN model using 10 percent of randomly selected data as a
verification set in arithmetic scale.
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Figure 51. Graph. Mz ANN model using 10 percent of randomly selected data as a
verification set in logarithmic scale.
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5.2 VV ANN MODEL

The characterization and verification results of the VV ANN model are shown in figure 52
through figure 55 in a manner similar to that shown for the Mz ANN model. Like the Mz ANN
model, the VV model shows good fitting statistics with a high R* = 0.95 (0.93 in arithmetic
space) and a low Se/Sy = 0.23 (0.26 in arithmetic space). The verification plots are shown in
figure 54 and figure 55. Although the verification statistics are not as favorable as those

found for the M ANN model, they are still better overall than those of the existing closed-
form solutions.
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Figure 52. Graph. VV ANN model using 90 percent of randomly selected data as a training
set in arithmetic scale.
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Figure 53. Graph. VV ANN model using 90 percent of randomly selected data as a training
set in logarithmic scale.
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Figure 54. Graph. VV ANN model using 10 percent of randomly selected data as a
verification set in arithmetic scale.
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Figure 55. Graph. VV ANN model using 10 percent of randomly selected data as a
verification set in logarithmic scale.

5.3 GV ANN MODEL

The characterization and verification results of the GV ANN model are shown in figure 56
through figure 59. The calibration dataset for this model shows similar or slightly better fitting
statistics than the VV ANN model, with an R* = 0.96 (0.90 in arithmetic space) and a Se/Sy =
0.19 (0.32 in arithmetic space). The verification plots are shown in figure 58 and figure 59, and
the model predictions agree favorably with the measured moduli. Care must be taken when
visually comparing the predictability of the VV ANN and GV ANN models because each uses a
different number of datapoints for calibration and verification (see table 21).
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Figure 56. Graph. GV ANN model using 90 percent of randomly selected data as a training
set in arithmetic scale.
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Figure 57. Graph. GV ANN model using 90 percent of randomly selected data as a training
set in logarithmic scale.
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Figure 58. Graph. GV ANN model using 10 percent of randomly selected data as a
verification set in arithmetic scale.
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Figure 59. Graph. GV ANN model using 10 percent of randomly selected data as a
verification set in logarithmic scale.
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5.4 OTHER ANN MODELS

Through the course of this study, some effort was made to develop ANN models with
gravimetric (as opposed to volumetric) input variables. Ultimately, these models were not fully
developed nor were they used in the modeling efforts because, after a preliminary review, it was
determined that such models would not be useful. Although it is true that some layers contained
gravimetric-based effective asphalt contents, these sections also contained enough information to
allow the volumetric properties VMA and VFA to be computed. The most common relationship
for the three key volumetric properties is shown in equation 49 as follows:

V., =VMA (1 - V—FAJ
100 (49)
5.5 ERROR ASSESSMENT
For statistical validity, the expected error for each of the three main ANN models has been
assessed using the following error function:
|E* -|E*,,..
% EI"}" or = Measure: Predicted 100
E Measured (5 0)

A probability distribution function for the error was computed for each model by using the
verification dataset for the respective model. These datasets are shown in figure 50 and

figure 51 for Mr ANN, figure 54 and figure 55 for VV ANN, and figure 58 and figure 59 for
GV ANN. The distribution function is shown for each model, including the previously discussed
closed-form models presented in table 23. The distribution of each error function is
approximately normal and, as such, the error values that encompass a 95 percent reliability
interval for the percentage of error in each model can be readily computed.

Because the number of data points used to verify each model is so large (see the last row in
table 23), the distribution is assumed normal, and a z-score of 1.96 is used to compute the
reliability ranges. Sy is computed after compiling the percent error values for each prediction of
the respective model. After rounding slightly for convenience, the suggested reliability range for
each ANN model is as follows:

e My ANN: £55 percent.

e VV ANN: £75 percent.

e GV ANN: £60 percent.
It is also found from table 23 that when the closed-form solutions are applied to a completely
independent dataset, each solution yields a substantial number of predictions with errors
exceeding -105 percent. The dataset used to compute these statistics is completely independent

of the data used in calibrating any of these closed-form solutions. It also includes a mixture of
AMPT and TP-62 measured moduli.® The high number of large negative error observations
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suggests a bias towards over-prediction of the |[E*| values with each model. The bias in
predictions can be clearly observed by examining figure 8 for the modified Witczak model and
figure 10 for the Hirsch model. A comparison of figure 7 and figure 9 shows a tendency of the
Hirsch model to underpredict |E*| at higher modulus values more so than the modified Witczak
model. This trend is also captured in table 23, where the error distribution for the Hirsch model is
skewed towards positive values. As a result of the existence of these prediction errors, the
reliability ranges for the closed-form solutions are much larger than the ranges observed for the
ANN models as follows:

e Original Witczak: £200 percent.
e Modified Witczak: +175 percent.
e Hirsch: £125 percent.

Table 23. Probability distribution of error functions of each ANN model.

ANN Model (Percentage Within Range)
Percentage Original | Modified
Error Range Mp A\AY GV Witczak | Witczak | Hirsch
<-105 0.75 2.31 0.49 22.04 31.12 10.25
-105 to -90 0.32 0.86 0.77 2.86 5.11 2.65
-90 to -75 0.43 1.91 1.05 3.15 8.43 3.14
-75 to -60 0.21 2.44 2.02 3.72 8.97 4.46
-60 to -45 0.53 4.75 3.42 7.06 10.49 5.86
-45 to -30 5.98 7.59 8.02 8.30 11.39 8.58
-30to -15 15.06 14.32 16.11 9.83 9.24 12.34
-15t0 0 24.89 17.56 21.34 10.11 7.89 14.57
0to 15 28.53 19.14 21.48 12.02 4.48 13.81
15 to 30 19.02 15.12 15.69 13.65 2.06 10.11
30 to 45 3.74 8.65 6.28 6.20 0.54 7.67
45 to 60 0.32 4.16 2.58 1.05 0.27 4.81
60 to 75 0.21 1.06 0.63 0.00 0.00 1.39
75 to 90 0.00 0.13 0.14 0.00 0.00 0.35
> 105 0.00 0.00 0.00 0.00 0.00 0.00
Number of data
points used 936 1,515 1,434 1,048 1,115 1,434
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6.0 PREDICTION OF |[E*| FOR LTPP LAYERS

6.1 MODEL PRIORITIZATION AND DECISION TREE DEVELOPMENT

The developed ANN models were ranked based on the performance of each model for an
independent dataset that contains all of the required input parameters to be used in the different
models. The decision tree in figure 60 is the result of this prioritization and was used to populate
the LTPP database. As suspected at the outset of this project, the Mz ANN model yields the best
prediction possible and is the preferred model. This finding is not surprising given that the

Mpr ANN model takes actual mixture measured quantities as input. The intuition is also supported
in the fitting statistics shown in the figures presented in section 5.0. If My data are not available,
the next preferred model is the VV ANN model. Although the VV ANN shows poorer fitting
statistics than the GV ANN model in terms of logarithmic space, it shows better statistics in
terms of arithmetic space. The arithmetic statistics were used to rank these models because the
moduli values are expressed and utilized in terms of their arithmetic value. Of the three ANN
models, GV ANN received the lowest ranking. However, GV-PAR outranked the VV-grade
because the model GV-PAR uses measurements taken directly from the material of interest. The
VV-grade model uses viscosity values representative of the binder grade.
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Prediction Models Possible Grade GV-PAR GV wW MR

Figure 60. Illustration. Decision tree applied to population of LTPP database based on
ranking of ANN models.



The input sets available for each section are different. Consequently, the models that can be
utilized for a given section may differ. All the models that can be used for a specific section have
been identified. If any of the inputs are outside the range of the calibration data, then the model
for that section is considered to be a violated model, and predictions with it may or may not be
reasonable. Any available model that does not violate the input range criteria is used as the
predictive model for that section. In cases where only two violated models are available, the
model for that section must be decided manually by the user.

6.2 DATA QC

Two sets of internal QC checks were applied to the |E*| data produced for submission to the
LTPP database. The first QC check was used on the input values. All the other QCs were used to
check the output |E*| predictions. In the following sections, each of these QC criteria is
described. The work criterion is implied but not explicitly stated for each of these checks. The
quality grading system referenced is different than the standard record status definition used in
the LTPP database. For example, data assigned an “A” by the research team represent the highest
quality data, whereas the LTPP convention assigns an “E” to the highest quality data. The
research team established strict QC checks for these data to ensure that only the highest quality
data were assigned an “A” grade. The data that did not achieve an “A” grade should be used with
caution, and users should be fully aware that the data did not pass the QC check. All predictions
are included in the database so users can determine whether or not the data are suitable for their
needs. In addition, FHWA can revise the criteria used in the QC checks as deemed appropriate
based on the opinions of their experts.

6.2.1 QC #1

QC #1 checks for a violation of the input range used in each model based on the input ranges of
the calibration dataset, as seen in (see table 24). Figure 61 through figure 65 show example
predictions of |[E*| in two sections where violations of the input criteria have been detected. This
check is performed on a line-by-line basis, meaning that each time a modulus is predicted, the
input parameters are checked. Lines that pass the QC check receive a grade of “A,” whereas
those that do not pass the QC check receive a grade of “F.”

For the layers where |E*| predictions are estimated using the Mz ANN model but QC #1 is
violated, the mastercurve created appears visually continuous (see figure 61 and figure 62). The
reason for this appearance is that the output of this model is the mastercurve itself. However, the
output of the other two ANN models is the estimation of |E*| under a specific condition. In this
case, a violation of QC #1 may create a clear error in the mastercurve, as demonstrated in

figure 63 through figure 65. The acceptable range of input parameters is shown for the three
ANN models in table 24. These models do not estimate the information needed to create

the mastercurve.
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Table 24. Input ranges of different ANN models.

1 psi = 6.86 kPa

Figure 61. Graph. Example of the effect of a violation of QC #1 for Mz ANN model in

Reduced Frequency (Hz)

semi-log scale.
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Parameter
Mpg Mg Mg
5°C | 25°C | 40°C | fi | Viscosity | VMA VFA IG*| | Log(IE*|)
Model | Range | (GPa) | (GPa) | (GPa) | (Hz) (109 P) | (percent) | (percent) (psi) (psi)
MR Min 4.8003 1.081 | 0.3789
Max 34.053 | 15411 | 6.8637
VV- Min 0.01 | 1.99E-06 9.51 32.82 3.52
grade' | Max 25 | 2.70E+01 34.64 95.07 6.82
GV- Min 9.51 32.82 | 2.93E-02 3.52
PAR' | Max 22.21 95.07 | 6.76E+05 6.81
°C =(°F-32)/1.8
1 Pas=10P
1 psi = 6.86 kPa
'Indicates that VV-grade and GV-PAR have the same range of input.
Note: Blank cells indicate that the input parameter is not required in the model.
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Figure 62. Graph. Example of the effect of a violation of QC #1 for Mz ANN model in
log-log scale.
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Figure 63. Graph. Example of the effect of a violation of QC #1 for VV ANN model in
semi-log scale.
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Figure 64. Graph. Example of the effect of a violation of QC #1 for VV ANN model in
log-log scale.

1.E+07
T=14F o —— ""’0*”*}:::::%::i:tj
1.E+06 | O e e R
. A/&
7 A "
g 15705 | ——
g- P s ::::j:::::%
— T
x
w1 E+04 | e
1.E+03 | A T=70F
-m T=100F
—o—T=130F
1.E+02 |
0.01 0.1 1 0 00
Frequency (Hz)
1 psi = 6.86 kPa

Figure 65. Graph. Example of the effect of a violation of QC #1 for VV ANN model
unshifted data.

87



6.2.2 QC #2

QC #2 checks the trends of |E*| as a function of temperature and frequency. It is expected that
|E* decreases as the temperature increases and the loading frequency decreases. Figure 66
through figure 68 show sample cases of a QC #2 violation. In these examples, the predicted |E*|
value at 40 °F (4.4 °C) and 25 Hz is smaller than the predicted value at 40 °F (4.4 °C) and 10 Hz.
Similar to QC #1, this QC check is performed line-by-line; the lines that pass receive a grade of
“A,” and those that fail receive a grade of “F.”
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Figure 66. Graph. Example of the effect of a violation of QC #2 in semi-log scale.
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Figure 67. Graph. Example of the effect of a violation of QC #2 in log-log scale.
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Figure 68. Graph. Example of the effect of a violation of QC #2 unshifted data.
6.2.3 QC #3

The typical percentage of difference between 0.1 Hz at one temperature and 25 Hz at the next
warmest temperature is checked using QC #3. Equation 51 states the percentage of difference
and a typical value of this term based on the available data in this study. Figure 69 through
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figure 71 show the violation of QC #3 in one of the sections. For this particular section, a
violation occurred between 40 and 70 °F (4.4 and 21.1 °C). For this sample case, at 0.1 Hz
and 40 °F (4.4 °C), the modulus is equal to 1.29 x 10° psi (8.85 x 10°kPa). At 25 Hz and

70 °F (21.1 °C), the modulus is equal to 8.28 x 10° psi (56.8 x 10> kPa), which is a percentage
difference of 55.4 percent.

LowerTemperature (@ 0.1Hz — HigherTemperature (@ 25Hz

% Difference =
HigherTemperature (@ 25Hz (51)

e From 14 to 40 °F (-10 to 4.4 °C): +25 percent, -25 percent.
e From 40 to 70 °F (4.4 to 21.1 °C): +50 percent, -75 percent.
e From 70 to 100 °F (21.1 to 37.7 °C): +50 percent, -75 percent.
e From 100 to 130 °F (37.7 to 54.4 °C): +50 percent, -75 percent.
Unlike the previous QC checks, QC #3 is performed on the basis of temperature. For example, if

the percentage of difference between 14 and 40 °F (-10 and 4.4 °C) exceeds 25 percent, then all
of the predictions at 14 °F (-10 °C) would receive a grade of “F.”
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Figure 69. Graph. Example of the effect of a violation of QC #3 in semi-log scale.
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Figure 70. Graph. Example of the effect of a violation of QC #3 in log-log scale.
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Figure 71. Graph. Example of the effect of a violation of QC #3 unshifted data.
6.2.4 QC #4

in QC #4, the difference in |[E*| values predicted between 0.1 Hz at one temperature and 0.1 Hz
at the next warmest temperature is checked to see if appropriate trends with regard to
temperature and modulus hold. Sample cases of QC #4 violation are shown in figure 72 through
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figure 74. For the data in these figures, |E*| at 0.1 Hz and 40 °F (4.4 °C) is smaller than |E*| at
0.1 Hz and 70 °F (21.1 °C). In the case shown in these figures, this situation has led to a
discontinuous mastercurve because the optimization algorithm becomes confused when the
modulus does not decrease as the temperature increases. Similar to QC #3, QC #4 is applied on a
temperature basis.
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Figure 72. Graph. Example of the effect of a violation of QC #4 in semi-log scale.
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Figure 73. Graph. Example of the effect of a violation of QC #4 in log-log scale.
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Figure 74. Graph. Example of the effect of a violation of QC #4 unshifted data.

6.2.5 QC#5

QC #5 checks the range of shift factor values in the output predictions against typical values.
This check is used to indicate potential problems with the mastercurve generation process. The
limits identified and subsequently used are as follows:

o At14°F (-10°C): 3 <log(at) < 7
e At 130 °F (54.4°C): -5 <log(ar) <-2

The output parameters of interest from the ANNACAP software are SHIFT FACTOR
COEFFICIENT 1 (ou1), SHIFT FACTOR_ COEFFICIENT 2 (a.2), and SHIFT FACTOR _
COEFFICIENT 3 (a3). The shift factor is computed using equation 52 as follows:

log(a; )= T? +a, T+« (52)

Because the goal of this QC criterion is to judge the mastercurve generation process, only shift
factor values at extreme temperatures need to be examined. Note that because the My ANN
model predicts the mastercurve directly, any predictions made with this model will automatically
pass QC #5 without the need for calculation. When this QC is not passed, the entire section (at
all temperatures) receives a grade of “F.”

Figure 75 through figure 77 show violations of QC #5. In these cases, the shift factor at 14 °F

(-10 °C) is equal to 7.03. This effect results in a visual discontinuity in the mastercurve between
the 14- and 40-°F (-10- and 4.4-°C) datasets.
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Figure 75. Graph. Example of the effect of a violation of QC #5 in semi-log scale.
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Figure 76. Graph. Example of the effect of a violation of QC #5 in log-log scale.
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Figure 77. Graph. Example of the effect of a violation of QC #5 unshifted data.
6.2.6 QC #6

In an earlier version of the ANN models developed for this study, some cases had inputs within
the calibration input range, but the |E*| predictions obtained values of the limits of the calibration
data. In some other cases, |E*| did not change with varying temperature and frequency. QC #6
was expected to be the last QC check, but after improving the ANN models, the problem no
longer exists. Nevertheless, the check is performed on the data. The limiting [E*| values used to
judge whether a given prediction passes this QC check are given in table 25. Like QC #1 and

QC #2, this QC check is applied line-by-line.

Table 25. Limiting |E*| values used for QC #6.

Upper Lower
Model Limit (psi) | Limit (psi)
Mpr ANN N/A N/A
VV ANN 5,888,437 3,311.311
GV ANN 6,456,542 3,311.311

1 psi = 6.86 kPa
N/A indicates that data are not available.

6.2.7 QC #7

Similar to QC #5, QC #7 is designed to judge the mastercurve generation process. Each time a
mastercurve is generated, fitting statistics are computed. These statistics include the Se/Sy (of
combined predictions), and R?. According to the draft standard for mastercurve generation using
AASHTO TP-62 data, the explained variance should be greater than 0.99, and the ratio of Se/Sy
should be less than 0.05.)? When these limits are exceeded, QC #7 is triggered, and the layer
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fails. Because the Mz ANN model predicts the mastercurve directly, any predictions made with
this model will automatically pass QC #7 without the need for calculation. Equations 53-55 are
used to compute the necessary statistical parameters. Whenever this QC is violated, the entire
section receives a grade of “F.”

b \/%i[(logw o), ~ (084, ) | (53)

1

Where:
23 = Number of temperature/frequency combinations used minus the number of
fitting parameters minus 1.
(loglE*|4vn); = Logarithm of the modulus determined from the ANN models at a particular
temperature frequency combination.
(loglE*(4); = Logarithm of the modulus determined from the optimized sigmoidal fit.
S = |3 (log|E* oglEH) |
= — og|E —(log|E J
b 29 Zl:( g| |ANN ),' ( g| )avg (54)
Where:
29 = Number of temperature/frequency combinations used minus 1.
(log|E*|avg)i = Logarithm of the average modulus determined from the ANN models for a

given layer.

ey (238!
(29)S, (55)

6.3 CONTRACTOR JUDGMENT

The NCSU researchers used a combination of the above QC factors to judge the quality of the
modulus prediction for an individual modulus prediction. If QCs #1, #3, #4, and #6 all pass, then
the section receives a grade of “A.” If QC #1 fails but QCs #3, #4, and #6 all pass, then the
modulus receives a grade of “C,” which means the predicted moduli are questionable. Otherwise,
the modulus receives a grade of “F.”

6.4 CONTRACTOR MASTERCURVE JUDGMENT

QCs #5 and #7 are used to judge the quality of the calibrated mastercurve and shift factor
function. When both QCs pass, the section receives a grade of “A,” but when both fail, the
section receives a grade of “F.” If one passes and one fails, then the mastercurve and shift factor
function values are questionable, and the section receives a grade of “C.”

6.5 PREDICTION STATISTICS

The LTPP database contains information for a total of 1,806 layers that meet the criteria
described in section 3.4 of this report. These layers have binder data available at a combination

96



of different aging conditions including unaged or original-, RTFO-, PAV-, or field-aged. In the
field-aged data, 2,223 records are available because some layers’ properties may have been
measured at different dates. The total resulting number of records is 7,641. Using the combined
ANN models and requisite QC checks, modulus values were predicted for 363 records/layers in
the original-aged level, 469 records/layers in the RTFO-aged level, 1 record/layer in the

PAV level, and 503 records in the field-aged level. These numbers translate to predictions for
17.5 percent of the total number of records available. However, these records are distributed in
such a way that a higher percentage of the layers have some sort of valid prediction. Of the
1,806 layers in the database, 1,010, or 56 percent, have a modulus prediction at some aging
condition. Of these 1,010 layers, 615, or 34 percent of the total 1,806 layers, have completely
reasonable predictions (i.e., an “A” grade), and 89, or 4.9 percent of the total 1,806 layers, have
unreasonable predictions (i.e., an “F” grade). The remaining 306 layers (17 percent of the
1,806 layers) have questionable predictions (i.e., a “C” grade). Thus, the total percentage of
layers with a completely valid or questionable prediction is 51 percent. Table 26 shows the
summarized statistics of the population effort. Although it cannot be interpreted directly from
this table, the majority of the valid records were populated using the Mz ANN model followed

next by the VV-grade ANN model and the VV ANN model.

Table 26. Statistics of LTPP data populated with |E*|.

Aging Condition

Populated LTPP data Original | RTFO | PAV | Field | Total

Number of records 1,806 1,806 1,806| 2,223 | 7,641
Number of populated records 363 469 1 503 | 1,336
Grade A 147 252 0 465| 864

Number of records by contractor Grade C 0 1 1 38 40
individual judgment grade Grade F 216 216 0 0] 432
Grade A 44 142 0 0 186

Number of records by contractor Grade C 211 237 0 503| 951
mastercurve judgment grade Grade F 108 90 1 0 199
Populated records using My 5 0 0 503| 508
Populated records using VV 358 59 0 0| 417
Populated records using GV 0 0 1 0 1
Populated records using GV-PAR 0 2 0 0 2
Populated records using VV-grade 0 408 0 0| 408
Number of populated layers 1,010
Number of layers with valid and questionable predictions 921
Number of layers with fully valid predictions 615
Number of layers with failed predictions 89

6.6 LTPP DATABASE ADDITIONS

As a result of this project, nine tables were included in the LTPP database to document the inputs
used in the dynamic modulus models as well as resultant predictions.*” The tables were added to
the materials testing module (i.e., TST) of the LTPP database. Each table is described below. It
should be noted that inputs from the LTPP database as well as outputs from the models are in
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units that are consistent with popular convention, but both SI and English units are used in
the tables.

TST_ESTAR_MASTER: Identification information for all records in the ESTAR tables
(see table 27 for format).

TST_ESTAR _MODULUS: |E*| predictions from the models described in the report
(see table 28 for format).

TST_ESTAR_MODULUS_COEFF: Sigmodial and shift factor information generated
from the |E*| models (see table 29 for format).

TST_ESTAR_GSTAR_INPUT: Binder shear modulus information used as inputs into
the GV ANN model (see table 30 for format).

TST_ESTAR _GSTAR _CAM_COEFF: CAM coefficients used as inputs into the
GV ANN model (see table 31 for format).

TST_ESTAR_VOLUM_INPUT: Volumetric properties used as inputs into the
VV ANN model (see table 32 for format).

TST_ESTAR_VISC_INPUT: Binder viscosity information used as inputs into the
VV ANN model (see table 33 for format).

TST_ESTAR_VISC_MODEL_COEFF: A and VTS data generated from viscosity
inputs for use in the VV ANN model (see table 34 for format).

TST_ESTAR_MR INPUT: My data used as inputs into the Mz ANN model (see table
35 for format).
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Table 27. Structure and format of the TST_ESTAR_MASTER table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data
Numerical code for State or province. U.S. codes are
consistent with Federal Information Processing
STATE CODE Standards
Test section identification number assigned by LTPP
program. Must be combined with STATE CODE to
SHRP ID be unique
Unique sequential number assigned to pavement
layers starting with layer 1 as the deepest layer
LAYER NO (subgrade)
The four-character identifier for the SPS project used
to identify elements of information which are
PROJECT ID common to all sections in that project

PROJECT LAYER CODE

Sequential alphabetic code assigned to identify
group project-wide layers

PREDICTIVE MODEL

Code indicating the predictive model used to
generate ESTAR estimates

CONSTRUCTION DATE

Construction date of the layer

SAMPLE TYPE ESTAR

Code indicating the aging condition of the samples
used for inputs into the ESTAR predictive models

SAMPLE DATE

Sampling date if field-aged

SAMPLE AGE

Sample age if field-aged

RECORD_STATUS

Code indicating the general quality of the data as
outlined, based on the level of QC checks described
in the Database User Reference Guide"”

Table 28. Structure and format of the TST_ESTAR MODULUS table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data
TEMPERATURE Temperature of modulus prediction
FREQUENCY Frequency of modulus prediction

ESTAR

Predicted dynamic modulus

RECORD STATUS

Code indicating the general quality of the data as
outlined, based on the level of QC checks described
in the Database User Reference Guide'”
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Table 29. Structure and format of the TST_ESTAR_MODULUS_COEFF table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data
SIGMOIDAL COEFF 1 Sigmoidal fitting function coefficient delta
SIGMOIDAL COEFF 2 Sigmoidal fitting function coefficient alpha
SIGMOIDAL COEFF 3 Sigmoidal fitting function coefficient beta
SIGMOIDAL COEFF 4 Sigmoidal fitting function coefficient gamma

SHIFT FACTOR COEFF 1 [Shift factor fitting function coefficient alpha 1
SHIFT FACTOR COEFF 2 |Shift factor fitting function coefficient alpha 2
SHIFT FACTOR COEFF 3 [Shift factor fitting function coefficient alpha 3
Code indicating the general quality of the
mastercurve generation process. Pass if explained
variance is greater than 0.99 and ratio of standard
MASTERCURVE QUALITY |error to standard deviation is less than 0.05

Code indicating the general quality of the data as
outlined based on the level of QC checks described
RECORD STATUS in the Database User Reference Guide'”

Table 30. Structure and format of the TST_ESTAR_GSTAR_INPUT table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data
TEMPERATURE Temperature of modulus prediction
FREQUENCY Frequency of modulus prediction
GSTAR Binder shear modulus used for G* ANN model

Code indicating the general quality of the data as
outlined based on the level of QC checks described
RECORD STATUS in the Database User Reference Guide”

Table 31. Structure and format of the TST_ESTAR_GSTAR_CAM_COEFF table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data.
CAM COEFF 1 CAM fitting function coefficient G,
CAM COEFF 2 CAM fitting function coefficient wc
CAM COEFF 3 CAM fitting function coefficient &
CAM COEFF 4 CAM fitting function coefficient me

Code indicating the general quality of the data as
outlined based on the level of QC checks described
RECORD STATUS in the Database User Reference Guide"”
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Table 32. Structure and format of the TST_ESTAR_VOLUM_INPUT table.

Field Name

Field Description

ESTAR LINK

Generic key for linking ESTAR data

VMA

Voids in mineral aggregate as a percent of total
volume

VFA

Voids filled with asphalt as a percent of VMA

RECORD STATUS

Code indicating the general quality of the data as
outlined, based on the level of QC checks described
in the Database User Reference Guide"”

Table 33. Structure and format of the TST_ESTAR_VISC INPUT table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data
TEMPERATURE Temperature of modulus prediction
VISCOSITY Voids filled with asphalt as a percent of VMA

RECORD STATUS

Code indicating the general quality of the data as
outlined, based on the level of QC checks described
in the Database User Reference Guide'”

Table 34. Structure and format of the TST_ESTAR_VISC_MODEL_COEFF table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data
VISC A Viscosity model intercept
VISC VTS Viscosity model slope

RECORD STATUS

Code indicating the general quality of the data as
outlined, based on the level of QC checks described
in the Database User Reference Guide'”

Table 35. Structure and format of the TST_ESTAR MR _INPUT table.

Field Name Field Description
ESTAR LINK Generic key for linking ESTAR data
MR 5C Resilient modulus at 5 °C
MR 25C Resilient modulus at 25 °C
MR 40C Resilient modulus at 40 °C

RECORD STATUS

Code indicating the general quality of the data as
outlined, based on the level of QC checks described
in the Database User Reference Guide'”

°C = (°F-32)/1.8

QC checks were developed to be applied to the LTPP database. These checks include many
of the internal checks developed as part of this study as well as additional checks deemed

appropriate. As such, the data available in the LTPP database have been subjected to both the
research team’s internal QC checks and the LTPP database QC checks. Figure 78 shows the

ANN models and their appropriate input and output tables.
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Figure 78. Illustration. ANN models and their appropriate input and output tables.
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7.0 SUMMARY AND FUTURE WORK

Existing predictive equations, including the original Witczak equation (see equation 1), the
modified Witczak equation (NCHRP 1-40D), the Hirsch model, and the law of mixtures parallel
model were evaluated for accuracy and potential bias. (See references 2, 5, 6, and 7.) For
fairness to each model, a database consisting of hundreds of mixtures and binders and thousands
of single data points from projects across the United States was compiled and used in the
evaluation. This effort showed that although each model has certain benefits, no single model is
capable of highly accurate predictions over the complete range of necessary conditions.
Furthermore, none of these predictive models could predict the |E*| values when only the My was
available. This final criterion is crucial because more layers had available My values than the
information needed for the existing predictive models. Multiple models are necessary because
the layers in the LTPP database are not uniform in their population of material properties. As a
result, the research team developed ANN models that, through a pilot study, were shown to yield
reasonable and accurate predictions for the complete range of conditions needed. This
hierarchical approach thus allows a more complete population of |E*| values.

In the end, three ANN models were developed. Each model differed in the required input
parameters. The most accurate ANN model was found to utilize My, as its primary input
parameter. The other two models use mixture volumetric properties as well as a binder property
as input variables. The VV ANN model uses the binder viscosity and input frequency, whereas
the GV ANN model uses the binder |G*| property. These models were extended to include
conditions where perfect input values were not available, such as when |G* had been measured
at warm temperatures for the RTFO-aged binder and measured at intermediate temperatures for
the PAV binder or when only the binder grade was available. Statistical analysis and engineering
judgment were utilized to rank the predictive models, with the Mz ANN model being the best,
the VV ANN model being the second best, and the GV ANN model being the third best.
Imperfect input conditions were also ranked below these three models.

The individual ANN models developed for this project have practical implications beyond the
current study. The most direct use of these ANN models is the prediction of |E*| values for
MEPDG or other structural/performance analysis of AC pavements. They may be used in the
same way that existing closed-form solutions are used. The advantage of using ANN models for
this purpose is their improved accuracy when compared to existing closed-form solutions. The
Mpr ANN model developed in this project is the only available method for predicting |E*| over
the range of temperatures and frequencies needed for complete analysis. Agencies that have
managed to compile large databases of My values may find such a tool useful in local
calibration efforts.

The LTPP database was populated with |[E*| values at five temperatures and six frequencies by
using the prioritized ANN models. This database contains information for a total of 1,806 layers.
These layers have binder data available at a combination of different aging conditions, including
unaged or original-, RTFO-, PAV-, or field-aged. In the field-aged data, 2,223 records are
available because, for some layers, properties may have been measured at different dates. The
total resulting number of records is 7,641. Using the combined ANN models and requisite QC
checks, modulus values were predicted for 363 records/layers in the original-aged level,
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469 records/layers in the RTFO-aged level, 1 record/layer in the PAV level, and 503 records in
the field-aged level. These numbers translate to predictions for 17.5 percent of the total number
of records available. However, these records are distributed in such a way that a higher
percentage of the layers have some sort of valid prediction. Of the 1,806 layers in the database,
1,010, or 56 percent, have a modulus prediction at some aging condition. Of these 1,010 layers,
615, or 34 percent of the total 1,806 layers, have completely reasonable predictions (i.e., an
“A” grade), and 89, or 4.9 percent of the total 1,806 layers, have unreasonable predictions

(i.e., an “F” grade). The remaining 306 layers, 17 percent of the 1,806 layers, have questionable
predictions (i.e., a “C” grade). Thus, the total percentage of layers with a completely valid or
questionable prediction is 51 percent.

These populated values will allow users to develop a mastercurve for independent analysis or
directly into MEPDG. In addition, mastercurve sigmoidal parameters and temperature shift
factors were also computed and included in the population effort. The computed parameters are
included in the computed parameter data submitted to FHWA.

The following tasks constitute suggested future research efforts:

e Development and/or refinement of a closed-form |E*| predictive model to estimate the
dynamic modulus values as a function of temperature and frequency. The insight gained
with the current ANN models should aid in the development of such models.

e Development of individual temperature-based ANN or closed-form |E*| models. By
developing such models or the comprehensive closed-form model suggested in the future
task listed above, a maximum of 306 of the layers that currently have a questionable
modulus prediction could be populated with more accurate values.

e Performance of an indepth and comprehensive experimental study to gain better
understanding of the differences between the moduli measured via the AMPT and
TP-62 protocols.® Understanding the factors that have led to the clear differences found
in the datasets compiled by each of these techniques could lead to more robust
predictive models.
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APPENDIX A: PROCESSING ASPHALT BINDER VISCOSITY DATA

A.1 INTRODUCTION

Until the advent of the Superpave™™ mix design system in the early 1990s, the viscosity of
asphalt binders was the key measure used in purchase specifications. As a result, many sections
that are now reaching their design lives and, as a result, are included in the LTPP database,
contain various measures of viscosity. Over the years, four primary types of viscosity measures
have been adopted: (1) ring and ball temperature (R&BT), (2) penetration (at various
temperatures), (3) absolute viscosity at 140 °F (60 °C), and (4) kinematic viscosity at 275 °F
(135 °C). These measures have been used together or separately in various grading schemes.
With the exception of penetration, these viscosity measures are beyond the range of temperature
conditions typically needed for modulus prediction. As a result, a certain amount of processing
the available data is necessary. In this appendix, the steps necessary to properly analyze available
viscosity data are presented.

A.2 TEMPERATURE SUSCEPTIBILITY RELATIONSHIP

Although the relationship between viscosity and temperature is highly nonlinear, it has been
found that when proper transformations are made to temperature and viscosity, a linear
relationship exists. This relationship is commonly referred to as the “A-VTS relationship.
This relationship is shown schematically in figure 79 and mathematically in equation 56. The
plateau region in figure 79 is based on arguments that are, in turn, based on the chemical
structure of asphalt binder and suggest that the maximum viscosity for asphalt binder is

2.7 x 10" cP (0.0027 x 102 Pas).™ For the purposes of this report, this same limiting criterion
was also adopted.
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Figure 79. Graph. A-VTS relationship.
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(4+VTS10g(Ty) T > T,

loglog(n)= . *
glog(7n) =1 1.095 T,<T.. . (56)
Where:
l = Viscosity (cP).
A = Intercept of temperature susceptibility relationship.
VTS = Slope of temperature susceptibility relationship.
Tr =  Temperature in Rankine.
Teiic =  Temperature in Rankine at which the viscosity is equal to 2.7 x 10'% cP

(0.0027 x 10'? Pas).

Because the A-VTS relationship is linear, only two of the four viscosity measures are needed to
completely characterize the relationship. The following sections provide the equations necessary
to convert the four measures to actual viscosity.

A.3 R&BT TEMPERATURE

The softening point of asphalt binder as measured by AASHTO T53-08 is also known as
R&BT.* According to literature on the topic, this temperature, measured in Fahrenheit,

corresponds to the temperature at which asphalt binder has a viscosity of 13,000 P
(1,300 Pas).“*

A.4 PENETRATION

The penetration number for asphalt binder is determined via AASHTO T49-07.“°) In this test, a
3.5-0z (100-g) needle is used to penetrate an asphalt sample for 5 s. The amount of penetration,
measured in tenths of a millimeter, is the penetration number for the asphalt binder at the
particular test temperature. The measurement temperature typically used for specification
purposes is 77 °F (25 °C); however, other temperatures, including 39.2 and 115 °F (4 and 46 °C),
may also be measured. Penetration values are converted to viscosity using the relationship
suggested by Mirza and Witczak as seen in equation 57:44

log7 =10.5012 —2.2601log (PEN ) +0.00389(log(PEN ))’ (57)

Where:
n = Viscosity (P).
PEN = Penetration number at a given test temperature.

A.5 ABSOLUTE VISCOSITY

The absolute viscosity is the viscosity of asphalt binder measured at 140 °F (60 °C) by AASHTO
T202-03.“” Because this quantity is typically reported in poise instead of centipoise, the only
conversion needed is to multiply the given quantity by 100.

*Equation modified July 27, 2015.
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A.6 KINEMATIC VISCOSITY

The kinematic viscosity of asphalt binder is determined at 275 °F (135 °C) via AASHTO
T201-03.“® Kinematic and absolute viscosities are related by the density of the medium under
investigation. The relationship between these two quantities is shown in equation 58. For
LTPP purposes, it is assumed that the density for all binders is equal to 0.6 oz/in® (1.03 g/cm?).

n=v * o, (5 8)
Where:
I = Absolute viscosity (cP).
v = Kinematic viscosity (cSt).
P = Density (0z/in’ ((g/cm’)).
A.7 EXAMPLE PROBLEM

For a given asphalt binder, the following properties are measured:

R&BT temperature = 104 °F (40 °C)
PEN at 39.2 °F (4 °C) =19

PEN at 77.0 °F (25 °C) = 156

11 =774 P (77.4 Pas)

v =266.1 centistokes (cSt)

Using these relationships, the viscosity is computed for different temperatures as follows:

39.2 °F (4 °C) =4.14 x 10’ cP (0.00414 x 10° Pas)
77.0 °F (25 °C) = 3.66 x 10’ cP (0.00366 x 10’ Pas)
104 °F (40 °C) = 1.30 x 10°cP (0.0013 x 10° Pas)
140 °F (60 °C) = 7.74 x 10° cP (0.00774 x 10’ Pas)
275 °F (135 °C) = 2.74 x 10* cP (0.00274 x 10* Pas)

After performing linear regression on these quantities, it is found that 4 = 10.599,
VTS =-3.5646, and T¢yisicar = 464.8 °R.

A.8 TYPICAL VALUES FOR PURCHASE SPECIFICATION GRADE

As part of the NCHRP 1-37A effort, researchers compiled typical A and VTS values for different
purchase specification grades.”’ These typical values include Superpave™ PG binders, AC
viscosity-graded binders, and penetration-graded binders. Data were not compiled for all grades
in use across the United States, but most grades were included. Because some of the LTPP layers
fell in the category where the only binder information known was the grade, these relationships
are considered important. In table 36, the A and VTS parameters are presented for the different
grades reported in the MEPDG documentation.®
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Table 36. Relationship between asphalt binder grade and viscosity parameters.

Asphalt Asphalt

Binder Grade A VTS | Binder Grade A VTS

PG 46-34 11.5040| -3.9010 PG 70-28| 9.7150| -3.2170
PG 46-40 10.1010| -3.3930 PG 70-34| 8.9650| -2.9480
PG 46-46 8.7550| -2.9050 PG 70-40| 8.1290| -2.6480
PG 52-10 13.3860 | -4.5700 PG 76-10| 10.0590| -3.3310
PG 52-16 13.3050| -4.5410 PG 76-16| 10.0150| -3.3150
PG 52-22 12.7550| -4.3420 PG 76-22| 9.7150| -3.2080
PG 52-28 11.8400| -4.0120 PG 76-28| 9.2000| -3.0240
PG 52-34 10.7070| -3.6020 PG 76-34| 8.5320| -2.7850
PG 52-40 9.4960 | -3.1640 PG 82-10| 9.5140| -3.1280
PG 52-46 8.3100| -2.7360 PG 82-16| 9.4750| -3.1140
PG 58-10 12.3160| -4.1720 PG 82-22| 9.2090| -3.0190
PG 58-16 12.2480 | -4.1470 PG 82-28| 8.7500| -2.8560
PG 58-22 11.7870| -3.9810 PG 82-34| 8.1510| -2.6420
PG 58-28 11.0100| -3.7010 AC-2.5]11.5167| -3.8900
PG 58-34 10.0350| -3.3500 AC-5]11.2614| -3.7914
PG 58-40 8.9760| -2.9680 AC-10| 11.0134| -3.6954
PG 64-10 11.4320| -3.8420 AC-201 10.7709 | -3.6017
PG 64-16 11.3750| -3.8220 AC-31]10.6316| -3.5480
PG 64-22 10.9800 | -3.6800 AC-401 10.5338 | -3.5104
PG 64-28 10.3120| -3.4400 PEN 40-50| 10.5254| -3.5047
PG 64-34 9.4610| -3.1340 PEN 60-70| 10.6508 | -3.5537
PG 64-40 8.5240| -2.7980 PEN 85-100| 11.8232| -3.6210
PG 70-10 10.6900 | -3.5660| PEN 120-150| 11.0897| -3.7252
PG 70-16 10.6410| -3.5480| PEN 200-300| 11.8107| -4.0068
PG 70-22 10.2990 | -3.4260 — — —

— Indicate that no additional relationships exist.
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APPENDIX B: PROCESSING ASPHALT BINDER SHEAR MODULUS DATA

B.1 INTRODUCTION

A potential shortcoming of the predictive models that rely on the binder |G*| is the need for the
moduli to fall within the complete range of conditions under which the material mixture modulus
can be predicted. This range of conditions typically includes temperatures from 14 to 129.2 °F
(-10 to 54 °C) and frequencies from 25 to 0.1 Hz. All of the possible combinations of these
temperatures and frequencies should be known in order to effectively use the predictive
equations for pavement design purposes. The specification data cover the necessary range, but
four main problems arise in using the specification results to determine the material properties:
(1) the availability of data at only a limited number of temperatures, (2) the evaluation of LVE
properties at only a single frequency or time, (3) the mixture of time domain and frequency
domain measurements, and (4) a mixture of characteristic behaviors under different aging
conditions. It is possible to measure the material properties at a sufficient number of
frequencies/times and temperatures to perform the appropriate analysis. However, this process is
not part of standard agency practice and, therefore, is not included in the current LTPP database.

In this appendix, a combined phenomenological and mechanical approach is developed and
presented. This approach, when coupled with a standard optimization technique, can be used
with the existing specification test results to determine |G*| over the necessary range. This
approach provides sufficient information for |[E*| predictions without increasing the testing
requirements. This analytical methodology, although more complicated than that typically used
in agency offices, may be coded into a software package or a spreadsheet to allow easy, direct,
and rapid characterization.

B.2 USE OF BBR DATA IN |G*| MASTERCURVE GENERATION

In asphalt binder testing, two TPs are used to extract the LVE properties of the material. At high
and intermediate temperatures, DSR is used, and at low temperatures, BBR is used. To determine
the properties of a material over an entire range of in-service conditions, results from these two
TPs must be combined. The purpose of this section is to present a method that combines these
two outcomes into a single relationship.

A comparison of the mastercurve and the t-T superposition shift factor function development
with and without BBR data is also presented. The methodology used for mastercurve and t-T
shift factor function development using DSR and BBR data generally follows the method
presented by Kim et al.*”’ The method used herein differs from the Kim et al. method in that it
makes more extensive use of optimization techniques.

B.3 ANALYSIS USING DSR MEASUREMENTS

Significant literature exists on the development of mastercurves from DSR measurements.
Stiffness values at multiple combinations of temperature and frequency, such as those shown in
figure 80, are first determined via experimentation. The data are then horizontally shifted by
temperature along the logarithmic frequency axis to form a continuous function (see figure 81).
The amount of horizontal shift is the t-T shift factor for that particular temperature and the
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shifted frequency is referred to as the “reduced frequency.” This operation is expressed
mathematically in equation 59, and an example function is shown in figure 82.

@,
a, =
@r (59)
Where:
ar = Time-temperature shift factor.
wr = Frequency at the physical temperature.
ok = Reduced frequency of w7 at the reference temperature.
1.E+08
1.E+06 -
©
a
— 1.E+04 |-
o
1.E+02 -
1.E+00

0.1 1 10 100 1000

Frequency (rad/s)
°C = (°F-32)/1.8

Figure 80. Graph. |G*| versus frequency curves at different temperatures.
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Figure 81. Graph. |G*| versus reduced frequency mastercurve at 59 °F (15 °C).
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Figure 82. Graph. t-T shift factor function at 59 °F (15 °C).

Prior to desktop computers and optimization spreadsheet functions, the determination of the shift
factors and the functional form comprised distinct steps. However, a current common technique
is to assume some functional form for the mastercurve a priori and then optimize the coefficients
of this function along with either the t-T shift factors directly or a function that relates these
factors. Equation 60, which is an extension of the CAM model developed through the SHRP
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program, is assumed for the mastercurve, and the Williams-Landel-Ferry (WLF) model is
assumed for the t-T shift factor function (see equation 61). For all cases, 59 °F (15 °C) is taken as
the reference temperature (i.e., ar =1 at 59 °F (15 °C)).

o= ——
%
1)
1+[ CJ
Wy (60)
Where:
Ge = Maximum shear modulus or glassy modulus (pascals).
WR = Reduced frequency (rad/s).
., me, and k = Fitting coefficients.
CI(T-T
loga, = ‘(—R) (61)
C,+T-T,
Where:
ar = t-T shift factor at temperature T (°C).
Tr = Reference temperature (°C).
Ciand G, = Fitting coefficients.

B.4 ANALYSIS WITH BBR MEASUREMENTS

To utilize the BBR data in |G * mastercurve development, the data must be further processed
because BBR measurements are taken in the time domain whereas DSR measurements are taken
in the frequency domain. Also, BBR measurements are taken in the bending mode whereas DSR
measurements are taken in the shear mode.

The PG specification defines beam stiffness, S(¢), as the inverse of creep compliance, D(¢) (see
equation 62). The creep compliance values of ALF ACS5 at -22, -11.2, and -0.4 °F (-30, -24, and
-18 °C) are calculated from the BBR stiffness values and plotted in figure 83. In a manner similar
to the mastercurve development method mentioned previously, these curves are horizontally
shifted to form a continuous curve. Note that because these measurements are made in the time
domain, the reduced time is defined by equation 63.

1
S(1)= D(t) (62)
tT
t, =L
“a, (63)
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Figure 83. Graph. D(¢) at different temperatures for ALF ACS binder.

For D(t), a generalized power law (GPL) is assumed as seen in equation 64 as follows:
D(t)=D, + D" (64)

Where Dy, D;, and m are regression coefficients. In Kim et al., the determination of the
coefficients in equation 64 is shown through a regression technique.(49) For the work presented
here, the coefficients are determined via optimization using the Microsoft® Excel Solver
function. The two techniques are compared in figure 84 and found to yield indistinguishable
results. Note that for the BBR measurements, the t-T shift factors form a linear relationship with
temperature as seen in equation 65 as follows:

loga, gy, = C5 (T —Ty) (65)
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Figure 84. Graph. Comparison of optimization and regression GPL
characterization results.

To use the BBR results with DSR measurements, D(z) must be converted to |G*|. To make

this conversion, the mathematical consequences of linear viscoelasticity and equation 64 along
with equation 66 are utilized. Note that in this process, Poisson’s ratio is assumed to be time-
independent and has a value of 0.50.

1

GH=———
67 2(1+v)|D* (66)

In this equation, vis Poisson’s ratio and |[D*| is the dynamic axial creep compliance. From linear
viscoelasticity, this compliance can be determined by the following relationship:

[D¥=(D) +(D")

(67)
Where:
D' = First vector component of |D*|.
D" = Second vector component of |D*.
Both are defined for the GPL in equations 68 and 69 as follows:
m
D'=D,+DI'(m+1)w, " cos| —
DI (1), cos| "2 .
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D"= DT (m+1)@, " sin (@)
2 (69)

Although it is not necessary for this methodology, the frequencies at which the shear modulus is
determined are consistent with LVE time-frequency equivalency principles. The equivalency is
given in equation 70 as follows:

7ty (70)
B.5 COMBINING DSR AND BBR ANALYSIS RESULTS

To utilize the BBR measurements for CAM model development and t-T shift factor
determination, the Microsoft® Excel Solver optimization package is used. In this technique, the
coefficients of the CAM model (see equation 60), the GPL model (see equation 64), the WLF
equation for t-T shift factors above 32 °F (0 °C), and the t-T shift factor slope for temperatures
below 32 °F (0 °C) are simultaneously optimized such that the objective function in equation 71
is minimized. The results from this optimization are shown in figure 85 and figure 86 for the
WesTrack binder. Results of the characterization for all binders for a reference temperature of
59 °F (15 °C) are shown in table 37.

2

M
Objective Function = Z(log(| G* |psz ) —1og (| G* | s )), +

2

(108(D(1),,, ) -1og(D(0),,,)) " +

M=

~

M=

(108 (| G*Lype )~ 10 (1 G* ey ) (71)

~
Il
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Figure 85. Graph. |G* mastercurve for the WesTrack binder at 59 °F (15 °C).
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Figure 86. Graph. Optimized t-T shift function for WesTrack binder at 59 °F (15 °C).
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Table 37. Calibrated CAM model and t-T shift factor function coefficients using BBR data.

CAM t-T

Binder G, (Pa) | f.(rad/s) k m, C, (&) (68)
ALF AC5 3.60E+10 0.06| 0.0777| 1.4245|-13.4747| 99.8914-0.1447
ALF ACI10 2.49E+10 0.09| 0.0851| 1.4299|-12.9868 | 90.7373|-0.1481
ALF AC20 1.81E+09 1.60| 0.1278 | 1.1693|-13.6667 | 94.2261|-0.1520
ALF Novophalt 8.38E+08 0.60| 0.1265| 1.0477|-12.6598 | 80.6345|-0.1624
ALF Styrelf 8.35E+10 0.00| 0.0622| 1.2543|-15.5337|121.0536|-0.1525
MnRd. AC20 1.44E+09 0.54| 0.1288| 1.2208|-12.6909| 77.2684|-0.1638
MnRd. Pen120-150 | 4.04E+10 0.11| 0.0842| 1.4556|-12.1122| 78.8723|-0.1453
WesTrack 1.17E+09 0.60| 0.1411| 1.1828|-12.9616| 73.4526(-0.1547
1 psi=6.86 kPa

B.6 COMPARISON OF RESULTS WITH AND WITHOUT BBR MEASUREMENTS

The methodology presented in the previous section has also been performed using only the DSR
measurements. In this analysis, only the CAM model coefficients and WLF model coefficients
are allowed to change, and the objective function is modified to that (see equation 72). The
purpose of this analysis is to determine the effect of omitting BBR measurements when
determining |G *| values outside the DSR measured range. With this goal in mind, it is

assumed that the analysis using BBR data represents the most accurate determination of the

|G *| mastercurve.

M
Objective Function = Z(log(| G* | sz ) —10g (| G* |00y ))i2 (72)

i=1
The calibrated CAM model coefficients and the t-T shift factor function coefficients for each of
the binders are shown in table 38. A comparison of the values presented in table 37 and table 38
reveals no consistent trend. In some cases, the values from the calibrated model are higher than
those from the BBR-calibrated models (higher G, and & values and lower m,), whereas the
opposite occurs in other models. In addition, the t-T shift factor function does not extrapolate
well to lower temperatures when only DSR values are used in the calibration. An example of this
behavior can be seen in figure 87. However, the figure shows that consistent results between the
two characterization schemes occur at the DSR temperatures. To examine the effect of the
extrapolation error, the GPL model is fitted to the BBR measurements, and the resulting overlap
between the two datasets can be observed. When using the DSR-calibrated t-T shift factors, the
BBR data are not continuous with the DSR data (see figure 88). This result suggests that the
effect of extrapolating the t-T shift factor function is significant and may lead to errors.
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Table 38. Calibrated CAM model and t-T shift factor function coefficients omitting

BBR data.
CAM t-T
Binder G, (Pa) | f. (rad/s) k m, Gy (&)
ALF AC5 5.24E+09 0.66| 0.0976| 1.2887|-13.2075| 98.3537
ALF AC10 3.60E+10 0.62| 0.0872| 1.3514|-13.0002| 92.7463
ALF AC20 1.25E+10 0.34| 0.0968| 1.2981|-14.0171| 98.1479
ALF Novophalt 3.35E+07 1.74| 0.3069| 0.8552|-12.3904 | 79.8044
ALF Styrelft 4.52E+09 0.04| 0.0824| 1.1214|-14.8831 | 108.9959
MnRd. AC20 3.72E+10 0.57| 0.0924| 1.3303|-13.1226| 86.8517
MnRd. Pen120-150 | 7.42E+10 0.90| 0.0851| 1.3752|-12.1104| 80.9397
WesTrack 1.43E+08 4.33] 0.2623| 1.0068 |-13.1142| 81.7971
1 psi = 6.86 kPa
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Figure 87. Graph. Comparison of t-T shift factor functions calibrated with and without
BBR data.
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Figure 88. Graph. |G* mastercurve using t-T shift factor function calibrated without
BBR data.

For the purposes of this report, the most critical information is found in the differences between
these two techniques at TP-62 temperatures (14, 41, 68, 104, and 129.2 °F (-10, 5, 20, 40, and
54 °C)) and frequencies (25, 10, 5, 1, 0.5, and 0.1 Hz). To explore these conditions, the
difference formula shown in equation 73 is utilized for |G*| values that are predicted using the
calibrated CAM models at the TP-62 temperatures and frequencies. The results are summarized
in table 39 for each of the binders.

G
0 . _ with BBR without BBR
ADZJ‘(f B |G >I<|wit/1 BBR 100 (73)

_|>x<
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Table 39. Percentage of difference between BBR-calibrated and non-BBR-calibrated |G*|
at TP-62 temperatures and frequencies.

Temperature | Frequency | ALF | ALF ALF ALF ALF | MnRoad | Pen Wes

(&9 (Hz) ACS | AC10 | AC20 |Novochip | Styrene | AC20 |120-150 | Track
-10 25|-11.09| -153.94| -211.16 87.30 29.32| -629.40| -334.59| 67.37
-10 10]-20.53 | -162.36| -203.86 85.55 23.47| -589.44| -358.74| 63.23
-10 5/-28.23] -169.15| -198.98 83.95 18.73| -561.10| -378.72| 59.42
-10 1/-48.12| -186.48 | -189.99 78.88 6.61| -501.81| -431.57| 47.49
-10 0.5]-57.59| -194.67| -187.24 75.91 0.90| -479.17| -457.47| 40.55
-10 0.1]-81.72| -215.54| -183.75 66.24| -13.55| -433.54| -526.17| 18.18

5 25| 16.83| -11.35] -29.59 72.25 20.04 -77.81] -13.86| 54.92
5 10| 14.07 -9.28 | -22.56 67.17 15.44 -58.57| -10.94| 50.21
5 5] 12.09 =770 -17.75 62.64 11.89 -45.57 -8.76 | 46.44
5 1| 7.96 -4.02 -8.19 49.60 3.57 -20.03 -3.78| 37.54
5 05| 642 -2.44 -4.73 42.92 -0.02 -10.83 -1.69| 33.93
5 0.1 3.50 1.16 1.84 25.70 -8.25 7.00 298| 27.26
20 25| 3.60 -6.13 -3.81 21.12 9.08 -18.13 -5.92 1.89
20 10 2.11 -4.30 -0.90 10.85 5.61 -9.73 -3.60] -2.43
20 5/ 1.20 -2.94 0.90 3.71 3.09 -4.23 -191| -4.39
20 1| -0.15 0.06 3.86 -8.63 -2.32 6.09 1.75| -4.19
20 0.5] -0.40 1.28 4.63 -11.52 -4.42 9.61 321 -2.22
20 0.1 -0.24 3.92 542 -12.25 -8.72 15.95 6.27 547
40 25| -3.12 -2.17 3.73 -17.56 3.18 -1.44 -1.13] -20.55
40 10| -2.98 -0.87 3.76 -15.91 1.48 1.13 0.35] -15.26
40 5] -2.66 0.05 3.52 -13.42 0.38 2.60 1.37] -10.88
40 1| -1.30 1.90 2.23 -5.35 -1.53 4.65 3.36| -0.80
40 0.5] -0.49 2.56 1.41 -1.57 -2.06 5.01 4.04 3.10
40 0.1 1.78 3.78 -0.92 6.39 -2.69 4.89 5.22| 1041
54 25| -4.30 -0.72 3.71 -12.03 1.64 0.44 0.31] -11.80
54 10| -3.44 0.20 2.81 -7.08 0.87 1.07 1.28] -6.28
54 5| -2.64 0.81 1.97 -3.32 0.49 1.21 1.90| -2.54
54 1| -0.39 1.87 -0.37 4.40 0.19 0.58 2.90 4.19
54 0.5] 0.70 2.18 -1.46 7.01 0.31 -0.02 3.14 6.13
54 0.1] 3.38 248 -4.01 10.96 1.07 -1.99 3.22 8.28

°C = (°F-32)/1.8

The results in table 39 show that extreme errors may result when using only DSR measurements
in the |G*| mastercurve characterization. However, these errors are contained entirely within the
low temperature range. At temperatures included in the DSR testing (greater than 59 °F (15 °C)),
the errors are small. To place perspective on the differences shown in table 39, the mastercurves
for the ALF ACS5 and MnRoad Pen 120-150 binders are shown in figure 89 and figure 90,
respectively. Note that the mastercurves themselves are calibrated well and that the observed
errors are almost entirely related to the t-T shift factor errors (see figure 87). It is interesting to
note that the two mastercurves that seem to have the poorest match (i.e., the WesTrack binder in
figure 91) do not have the highest error. This result is due to the nature of the error definition and
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also due to differences in the t-T shift factors obtained from the two characterization methods.
This latter effect is seen in figure 89 through figure 91 where all the mastercurves change from
an equivalent reduced frequency of 14 °F (-10 °C) and 25 Hz to 129.2 °F (54 °C) and 0.1 Hz.
This effect is seen also in the t-T shift factor functions in figure 92 through figure 94.

Furthermore, equation 73 indicates that the error is defined in normal space, and figure 91
indicates that the magnitude of |G*| is smaller for the Westrack binder than for the other binders.
If the error is defined in logarithmic space, as seen in equation 74, the error is found to follow the
graphical results more closely, as shown in table 40.

The results in figure 89 through figure 94, table 39, and table 40 affect the LTPP database
population effort because BBR data are not currently available for any of the LTPP sections. In
fact, the only data available in the LTPP database are DSR results at 10 rad/s and limited
temperatures. A technique for considering these limited data is presented in the next section.
However, these figures and tables reveal that without the BBR test results, the strength of the
|E*| predictive models, which rely on the |G*|, would be severely limited at low temperatures.
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Reduced Angular Frequency (rad/s)
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Figure 89. Graph. |G*| mastercurves characterized with and without BBR data for
ALF ACS binder.
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Figure 90. Graph. |G*| mastercurves characterized with and without BBR data for the

MnRoad Pen 120-150 binder.
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Figure 91. Graph. |G*| mastercurves characterized with and without BBR data for the

WesTrack binder.
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Figure 92. Graph. t-T shift factor function characterized with and without BBR data for
the ALF ACS binder.
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Figure 93. Graph. t-T shift factor function characterized with and without BBR data for
the MnRoad Pen 120-150 binder.
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Figure 94. Graph. t-T shift factor function characterized with and without BBR data for
the WesTrack binder.

%Diff = 1og(|G*|W,¢h BBR ) - 10g(|G *

log(|G>x<
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*100
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(74)
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Table 40. Percentage of log difference between BBR-calibrated and non-BBR-calibrated
|G*| at TP-62 temperatures and frequencies.

Temperature Frequency | ALF | ALF | ALF ALF ALF (MnRoad| PEN Wes
(&9 (Hz) ACS | AC10 | AC20 Novochip|Styrine| AC20 | 120-150 | Track
-10 25| -0.54| -4.06| -5.16 10.71 1.75 -8.35 -4.65 5.97
-10 10| -0.97| -424| -5.04 10.14 1.37 -8.01 -4.81 5.49
-10 5| -1.30] -439] -4.96 9.67 1.07 -7.75 -4.95 5.09
-10 1| -2.12] -476| -4.80 8.43 0.36 -7.14 -5.31 4.09
-10 0.5] -249| -494| -4.76 7.83 0.05 -6.89 -5.48 3.62
-10 0.1] -339] -540| -4.71 6.29| -0.70 -6.32 -5.92 244
5 25| 1.03] -0.58| -1.39 6.96 1.24 -3.06 -0.69 4.17
5 10| 0.86] -0.49| -1.11 6.12 0.95 -2.49 -0.56 3.69
5 5/ 0.75] -0.42] -0.90 5.47 0.73 -2.05 -0.46 3.34
5 1| 050 -0.23| -0.45 391 0.22 -1.03 -0.21 2.58
5 05| 041 -0.14] -0.27 3.24 0.00 -0.59 -0.10 2.30
5 0.1 0.23] 0.07 0.11 1.78] -0.50 0.43 0.19 1.83
20 25| 0.24| -0.37| -0.23 1.43 0.59 -1.00 -0.36 0.11
20 10| 0.14| -0.27| -0.06 0.71 0.37 -0.57 -0.23| -0.15
20 5/ 0.08] -0.19 0.06 0.24 0.20 -0.26 -0.13] -0.27
20 1| -0.01| 0.00 0.26 -0.55] -0.16 0.42 0.13] -0.27
20 0.5] -0.03] 0.09 0.33 -0.74] -0.30 0.70 0.24| -0.15
20 0.1 -0.02] 0.32 0.42 -0.83] -0.63 1.29 0.52 0.40
40 25| -0.24| -0.17 0.28 -1.15 0.23 -0.11 -0.09| -1.35
40 10| -0.24| -0.07 0.29 -1.09 0.11 0.09 0.03| -1.08
40 5| -0.23] 0.00 0.28 -0.96 0.03 0.21 0.12] -0.82
40 1| -0.12] 0.18 0.20 -0.43] -0.13 0.42 0.33] -0.07
40 0.5] -0.05] 0.26 0.13 -0.13] -0.18 0.48 0.42 0.29
40 0.1 021] 044| -0.10 0.63] -0.25 0.54 0.64 1.16
54 25| -0.38| -0.06 0.32 -0.91 0.13 0.04 0.03| -0.95
54 10| -0.33| 0.02 0.26 -0.58 0.07 0.10 0.13] -0.55
54 5| -0.27] 0.08 0.19 -0.29 0.04 0.12 0.20] -0.24
54 1| -0.05] 0.22] -0.04 0.44 0.02 0.07 0.36 0.47
54 0.5] 0.09] 028 -0.17 0.75 0.03 0.00 0.42 0.75
54 0.1] 0.53] 039 -0.54 1.37 0.12 -0.29 0.53 1.25

°C = (°F-32)/1.8

B.7 EXTRACTING FULL BINDER |G*| DATA FROM LIMITED ISOCHRONAL
MEASUREMENTS

To fully utilize |G*| in mixture |E*| predictive models, a complete dataset is needed. This dataset
must be complete because it must cover the temperature and frequency ranges over which the
mixture modulus should be predicted. The full suite of Superpave ™ binder specification tests
covers this range; however, the data are inconsistent (i.e., |G*| from DSR, and S(¢) and m from
BBR) and require further processing for complete utilization. This section of the report presents
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a method for analyzing standard PG binder characterization tests so that the results can provide a
more complete dataset.

This method is currently under development by the research team and will be refined as

a more complete picture of the available data is obtained. It is assumed that DSR (i.e., |G*|)
measurements taken at the standard frequency of 10 rad/s, or 1.67 Hz, at multiple temperatures
are available. Results from Superpave " BBR testing are not necessary in this methodology,
but a theoretically justified technique for including such data in the process is shown and
evaluated. Currently, such data are not available from the LTPP database; however, the
methodology is evaluated nonetheless in case such characterization is included in future
research efforts.

To extract a more complete dataset, an analytical expression for |G*| as a function of frequency
and temperature must be found. Because asphalt binder is thermorheologically simple, these two
factors can be combined into a single parameter, known as “reduced frequency” and shown in
equations 75 and 76. Note that although the nomenclature in this report represents frequency
using o, which implies the unit is radians per second, the methodology is equally applicable to
frequency in hertz.

G°|(T,0)=|G"|(e) (75)
®, =0xa, (76)
Where:
wr = Reduced frequency.
ar = t-T shift factor, which is a function of temperature.

This factor can be determined experimentally using results from a temperature and frequency
sweep test, such as the test found in AASHTO TP-62.®) From these tests, the t-T shift factor is
determined by horizontally shifting the data at different temperatures until a smooth varying
function results. This process is shown previously in this report and is only possible when
measurements are taken at multiple frequencies and temperatures.

Measurements from a single-frequency temperature sweep test, such as Superpave ™ DSR
testing, cannot be used directly to extract these t-T shift factors by simple horizontal translations.
This complication arises because the slope of the modulus-temperature relationship, a value that
can be determined from single-frequency temperature sweep tests, is dependent on both the
frequency and the temperature. Mathematically, this discrepancy can be expressed as follows:

o|G*  0|G olog(w,)
or  dlog(w,) oT (77)
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Where:

T = Temperature.
WR = Reduced frequency.
0|G*/6T = Derivative of |G* with respect to time, known from Superpave ™ DSR testing.

Direct determination is not possible using these measurements, but equation 77 can be solved
analytically if functional forms for the t-T shift factor function and for |G*| as a function of
reduced frequency are known. In this methodology, the CAM model is assumed sufficient for
the latter, and a secondary surrogate model along with the WLF equation is assumed for the
logarithm of the former (note that two surrogate models are discussed in the following section).
These functions are shown in equations 78 and 79, respectively.

G
|G*|= . . m%
{H_[@JJ
“r (78)
C(T-T,
logaT=—l( )
C,+T-T, (79)

Where Gg, @, k, Ci, C», and Cj are fitting coefficients. Combining equations 76 and 79 yields
the following analytical expression for reduced frequency:

G(T-Tx)
@, = 0*10°"r (80)

From equation 77, DSR measurements can be used directly to determine the left-hand side of the
equation, and the right-hand side can be solved analytically. However, initial trials using this
approach proved unsuccessful due to the large spacing between typical Superpave™™ DSR
measurements. Instead, a more direct approach that uses equation 78 was successful; however,

it is necessary to first discuss the model used to predict the t-T shift factors.

B.8 T-T SHIFT FACTOR SURROGATE MODEL DEVELOPMENT

Because no clear theoretical link was found between typical DSR measurements and the t-T shift
factors, a phenomenological approach and a simple averaging approach were taken. As shown in
the following sections, both approaches provide approximately the same accuracy; however, the
final recommended procedure will be the subject of further investigation. Because it is important
that this t-T shift factor function covers the range over which the mixture modulus would be
predicted, only binders with BBR test data have been used. A list of these binders can be found
in table 4. For each of these binders, the t-T shift factors were found from optimization fitting
using the CAM and WLF equations.
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B.8.1 Phenomenological t-T Shift Factor Function Model

A similarity exists between the normalized shear modulus at 10 rad/s and the log shift factor
function. Additionally, a similar relationship exists in the BBR test results at 60 s. These
relationships are shown in figure 95 for the binders with BBR test data. For simplicity, both
relationships are normalized to |G*| at 10 rad/s at the chosen reference temperature. Because this
value is taken as the reference condition and because BBR data are essentially DSR results at
0.01 rad/s (w=2/rt), an apparent discontinuity is found in the BBR curve at the reference
condition. To understand this discontinuity, it must be recognized that to obtain a given ratio
larger than one from DSR test results, the test must be performed at a higher temperature than for
a BBR test. This temperature effect is integral to the relationship shown in figure 95 for the
DSR results. Because all of the BBR test results are obtained at the same time at 60 s, each is
affected similarly, resulting in the discontinuity. However, the slope of this relationship stays
much the same as seen in figure 96, where the offset discontinuity in the BBR data has been
artificially removed.

It should be noted that the relationships shown in figure 95 have been developed at a reference
temperature of 59 °F (15 °C). If DSR measurements are taken at this temperature, then the
relationship may be used directly. Alternatively, |G*| at 59 °F (15 °C) may be interpolated if DSR
measurements are taken near this temperature. Also, the relationship can be used even if the
reference condition is not 59 °F (15 °C), although some error would be inevitable. However,
the approach taken here recognizes that at around 59 °F (15 °C) (between 41 and 77 °F (5 and
25 °C)), the t-T shift factors are not significantly different. This relationship follows a second
order polynomial, and its implications are shown in the calibrated t-T shift factor relationship
shown in equations 81 and 82. The verification of these relationships is shown in figure 97

for FHW A mobile trailer and FHWA ALF binders, which were not included in the

calibration process.

log ay g, =.1639(4)" +2.0182%(A4)—(0.000638 * T —0.1469 * T, +2.06) (81)

108 ay gy = 2.1859(4) +3.1685—(0.000638 * T —0.1469 * T, +2.06) (82)

Where:

G*
A=log u -6.16+3.05 \/0.000418*T2—O.10*T +5.42 .
|G* R R

Ty

(83)
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Figure 95. Graph. Phenomenological t-T shift factor function.
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Figure 96. Graph. Effect of change in time from DSR to BBR on the t-T shift factor
function model.
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Figure 97. Graph. t-T shift factor model verification with phenomenological model.

B.8.2 Use of Average t-T Shift Factor Function

A second, more simplistic approach has also shown promise. From the available binder
databases, it was found that the t-T shift factor functions are somewhat similar across binder
types. In this approach, the same binders used to develop the phenomenological model are
processed to find an average representative shift factor function (see figure 98). The advantage
of this approach is its simplicity as well as the fact that BBR test results are not needed to
obtain a reasonable estimate of the t-T shift factor at low temperatures. Verification of this
model is shown in figure 99. Comparing figure 99 to figure 97, it is observed that the average
technique has a slightly improved R? value. In addition, the average technique does not tend to
show systematic underestimation of the phenomenological approach in the intermediate
temperature ranges. However, in general, the effectiveness of the model does not appear to be

significantly superior or inferior to the phenomenological approach. Both are evaluated in the
subsequent sections.
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Figure 98. Graph. Average t-T shift factor function.
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Figure 99. Graph. t-T shift factor model verification with average function model.
B.9 INCLUSION OF BBR DATA IN MASTERCURVE GENERATION

Including Superpave™-level BBR data in the optimization process is not as straightforward as
the process that combines full DSR and BBR characterization. Complications arise due to the
limited dataset that is available (typically only the beam stiffness term, S(¢), and m at 60 s for up
to three temperatures). Therefore, to use the data as accurately as possible, a few approximate
conversion and typical values need to be assumed. The process begins by observing from the
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theory of linear viscoelasticity that S is actually the inverse of the uniaxial extensional D(¢). In
order to convert to |G*|, the uniaxial relaxation modulus, £(¢), must be found. Because it is
possible that only a single BBR test result is available, the conversion technique must be capable
of single-point conversion. For this purpose, the approximate relationship given in equation 84 is
utilized as follows:

nrt D (t) nw (84)
Where 7 is equivalent to the m-value determined from the BBR test. After determining E(¢), the

approximate interrelationship in equation 85 is used to convert from time-domain to frequency-
domain functions as follows:

E(t)= E'(w)

_ 2
- (85)

Where E’(w) is the storage modulus. E'(@) is then converted to the dynamic uniaxial modulus
by using equation 86 as follows:

()= @)
() cos(¢) (86)

Where ¢ is the phase angle in the material. Experience has found that this value is approximately
24 degrees under BBR test conditions. Therefore, the actual relationship used in this
methodology is given by equation 87 as follows:

£ =1.095*E'
cos(24) (87)

£4-

Finally, to determine |G*|, the mechanistic relationship between uniaxial and shear deformation
shown in equation 88 is used. For this relationship, Poisson’s ratio is assumed to be time-
independent and to have a value of 0.5.

29 _ B 1
65~ 30 =
2(1+v) 2(1+05) 3 (88)
Combining equations 84 through 87, the relationship between |G *| and S(¢) is given by
equation 89, as follows:
0.365 *sin(nx
6°}(0) = 222 500 ) g
o (89)

In addition to calculating the shear stiffness values from beam stiffness and m-values, it is
worthwhile to consider fitting the m-values. Recognizing that m-values are the derivative
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of the logarithm of stiffness with respect to the logarithm of time and that simple multiplicative
relationships are used to convert from frequency to time, the analytical expression for the
m-value using the CAM model can be given by equation 90, as follows:

o, ¢
m
_610g|G*|_ ‘| o,

calculated a log COR » k
1+( Cj
O (90)

B.10 PAV- TO RTFO-AGING MODEL (PAR MODEL)

To develop a complete mastercurve from limited Superpave™ data, the conversion between
PAV- and RTFO-aging conditions is necessary. This conversion is also needed in the LTPP
database where |G*| values are given in terms of RTFO- and PAV-aging conditions. It is noted
that original |G *| values are also available in the database. A similar approach could be used to
convert from original (or field-aged) to RTFO. Currently, the more important conversion is from
PAYV to RTFO. To develop this relationship, the Witczak database binders listed in section 3.0
are used. In general, the relationship between |G*|p4y and |G *|rrro is found to be dependent on
temperature, frequency, and the chemical properties of the asphalt binder. Because none of the
Superpave ™ tests directly measure the chemical properties of the asphalt binder, the two
primary factors in the PAR model are temperature and frequency. Although not a major factor,
the Superpave ™ high temperature grade is found to be a secondary factor and may indirectly
capture some of the chemical composition effects.

The general form of the PAR model is shown in equation 91 where 7 and «, are the
temperature and frequency factors, respectively.

P

G *|PAV (91)

RTFO pav — KKy

In general, x7 follows a second order polynomial relationship, with the minimum occurring near
the high temperature PG (see figure 100). After calibrating 7, k) is characterized. This
relationship follows a power law relationship, with the parameters depending on the high
temperature grade of the asphalt binder, as seen in figure 101. With these relationships in mind,
equation 91 can be rewritten as equation 92 as follows:

|G * o = (BT + BT + B, ) (7007 92)

G *|PAV

Where 7 is temperature. Each of the parameters in equation 92 follow a first or second order
polynomial according to the high temperature PG of the binder. These parameters are
summarized in table 41. The calibration dataset along with the calibrated model are shown
according to high temperature PG in arithmetic and logarithmic spaces in figure 102 through
figure 105. For model verification, a database of binders obtained from the FHW A mobile trailer
and the binders used in the current FHWA ALF study are summarized in table 42. The
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verification is shown in figure 106 and figure 107, and agreement is found between the model

and actual data at all high temperature PG levels.

Table 41. PAR model coefficient summary for SuperpaveTM high temperature grades.

Number of
PG P iy’ B3 y T Aq A, | Observations| R’
46| 4.82E-05| -0.002| 0.169|0.858|0.082| -0.039| 0.062 Extranolated
52| 6.08E-05| -0.006| 0.359]0.842(0.082| -0.043| 0.180 P
58| 7.35E-05| -0.010| 0.514|0.819|0.084| -0.047| 0.281 429| 0.983
64| 8.61E-05| -0.012| 0.633]0.790| 0.086| -0.050| 0.363 1712 0.986
70| 9.88E-05| -0.014| 0.716]0.754| 0.090| -0.053| 0.428 182 0.937
76| 1.11E-04| -0.015| 0.763|0.712|0.095| -0.056| 0.474 537 0.964
82| 1.24E-04| -0.015| 0.774|0.663| 0.101| -0.058| 0.503 326 0.935
Unknown| 821E-05| -0.011| 0.641]0.787|0.082| -0.033| 0.689 2013 | 0.945
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Figure 100. Graph. Effect of temperature on aging ratio of asphalt binder.
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Figure 101. Graph. Effect of angular frequency on aging ratio of asphalt binder.
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Figure 102. Graph. Calibrated PAR model in arithmetic scale.
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Figure 103. Graph. Calibrated PAR model in logarithmic scale.
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Figure 104. Graph. Strength of PAR model in arithmetic scale.
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Figure 106. Graph. PAR model verification in arithmetic logarithmic scale.
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Figure 107. Graph. PAR model verification in logarithmic scale.

Table 42. PAR model verification dataset summary.

Number of
PG | Observations| R?
52 2971 0.702
58 605| 0.981
64 2289| 0.970
70 769 | 0.988
76 700| 0.985

Because the DSR data extend only to 59 °F (15 °C), a second relationship must be calibrated for
kr at temperatures consistent with the BBR test results. Such a relationship is calibrated by
assuming x,, is accurate for BBR conditions and then backcalculating k7 from equation 91 and
BBR test results under PAV and RTFO conditions. The results suggest that &7 changes linearly
with temperature under the BBR test conditions and that aging softens the material at the
extremely high reduced-frequency region, as seen in figure 108. This observation is confirmed
from |G* mastercurve analysis of the aforementioned binders and is believed to be the first of
such an observation. An example of this analysis is shown for the ALF AC 10 binder in

figure 109. Due to the limited database, this observation cannot be confirmed with certainty;
rather, k7 is treated as a fitting parameter, which, along with x,,, approximates the effect of
RTFO aging to PAV aging. The complete relationship between RTFO and PAV conditions for
BBR tests is given in equation 93, and the parameters are summarized along with the other
parameters in table 41. Finally, the calibrated BBR data model is shown in figure 110 and
figure 111.
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1E+09 .
| J
o PAVO ..!55&905
|
= RTF &@3'
1E+06 -
©
a
o
1E+03 -
1E+00
1E-08 1E-05 1E-02 1E+01 1E+04 1E+07
Reduced Angular Frequency (rad/s)
1 psi=6.86 kPa

Figure 109. Graph. Comparison of |G*| mastercurve analysis under PAV and RTFO
conditions for ALF AC10 binder.

1G o = (AT +4) (707 )| G 93)

PAYV

139



4.0E+08
m]
¢
°g
3.0E+08 r S
_ |
©
o oo ’@’
2 20E+08 - fg‘“
- vy
5 28
2y
1.0E+08 - ¢ + Measurement
o Model
0.0E+00 % ‘
0.0.E+00 1.0.E+08 2.0.E+08 3.0.E+08 4.0.E+08
|G*[pav (Pa)
1 psi=6.86 kPa

Figure 110. Graph. Calibrated PAR model for BBR conditions in arithmetic scale.
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B.11 AGING EFFECT ON M-VALUE

To address the issue of aging effects on the m-value, the PAR model is used to derive the
proper relationship. Consider that m, n, the log-log slope of S(?), and |G*|(w) are close in
absolute value at time-frequency equivalency points. In this case, the following equation
is considered:

_ 0ologS _ 6log|G*||

Ologt Ologw L;:l

it

Which leads to the following equation:

- log|G*|1 —log|G "‘|2

logw, —log w,

Casting equation 95 for mpgzro as follows:

N log (|G *L,mpo’1 ) - IOg (|G >l<|RTF0,2 )

RTFO ™~

logw, —logw,

Applying equation 91 to equation 96 as follows:

N log (|G *|PAV,1 K ) - 10g(|G *|PAV,2 15 )

~

RTFO
logw, —log w,

Simplification leads to the following:

log(x;,)—log(x,)
logw, —logw,

Mprpo = Mpyy

(94)

(95)

(96)

97)

(98)

The second term in equation 98 can be solved analytically given the mathematical relationship

for x provided in equation 92. Performing the differentiation leads to the following:

T
mRTFO ~ mPAV +

In(10)

(99)

Equation 99 is verified using the m-values for the binder data in the Witczak database, as shown

in figure 112.
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B.12 VERIFICATION OF LIMITED DATA DEVELOPMENT

Verification of the mastercurve construction using only isochronal measurements is divided

into three steps. The first verification level (divided into levels 1a and 1b) uses the Witczak
binder data, which are also used in the shift factor function model development (i.e., the

binder data in table 4 using available BBR measurements). However, this level is not considered
true verification because the data were used in the calibration process. Instead, this level assesses
the impact of model fitting errors. Levels 1a and 1b differ only in the use of the PAR model.
Also, level 1 verification includes BBR data in the analysis process, which is not representative
of the currently available LTPP database. However, the second two verification levels are
representative of data in the current LTPP database. For sections that have the complete
Superpave™ DSR suite, level 2 is the most representative. Sections without the complete

high temperature characterization data are better represented by the level 3 verification. Note
that for all sections, the phenomenological and average shift factor function models are used

and presented.

B.12.1 Level 1a Verification

The first check of these shifting principles consists of a circular check whereby the binders used
in the previous section help determine the WLF and CAM model coefficients using only data
that would typically be available for Superpave™ testing. For level 1a verification purposes,
only RTFO data are used in the analysis; level 1b verification adds an aging model to account for
the fact that Superpave ™ testing consists of results under original-, RTFO-, and PAV-aged
conditions. The steps taken in level 1a verification are as follows:

1. Find DSR results at 10 rad/s at 59, 77, 95, 140, 158, and 176 °F (15, 25, 35, 60, 70,
and 80 °C).
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2. Find BBR results at 60 s at either -22, -11.2, and -0.4 °F (-30, -24, and -18 °C) or at -11.2,
-0.4, and 10.4 °F (-24, -18, and -12 °C).

3. Convert BBR results to |G*| values using equation 89.

4. Determine the t-T shift factors via equations 81 and 82 or by using the average shift
factor function.

5. Fit the t-T shift factors to the WLF model using equation 79.

6. Optimize the CAM model coefficients to minimize the error between the DSR and
BBR results.

Typical analysis results are shown in figure 113 and figure 114. In general, the Superpave™
only data analysis results show good agreement with the full analysis results across all of the
selected binders. The complete results of level 1a verification are summarized in figure 115
through figure 118 in both normal and logarithmic scales. Overall, the calibrated model fits the
data well, with an overall average error of approximately 3.5 percent and a higher average
absolute error at 14 percent. These error percentages are comparable for both of the t-T shift
factor function models. The major difference between these two models appears to be the
tendency of the average shift factor function model to underpredict the modulus values in the
high region. Conversely, the average shift factor function tends to show a smaller spread in the
prediction error.

1E+09 .
— Full CAM Fit Full CAMFit
— Limited CAM Fit Timited CAM Fit
= DSR
_E+06 -, goo
(1}
Q.
o
1E+03 |-
[ |
1E+00

1E-08 1E-05 1E-02 1E+01 1E+04 1E+07

Reduced Angular Frequency (rad/s)
1 psi = 6.86 kPa

Figure 113. Graph. Comparison of typical |G*| mastercurves characterized using full
database and SuperpaveTM only database.
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Figure 115. Graph. Level 1a verification of limited data analysis procedure in arithmetic
scale using phenomenological shift factor function model.
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Figure 116. Graph. Level 1a verification of limited data analysis procedure in logarithmic
scale using phenomenological shift factor function model.
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Figure 117. Graph. Level 1a verification of limited data analysis procedure in arithmetic
scale using average shift factor function model.
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Figure 118. Graph. Level 1a verification of limited data analysis procedure in logarithmic

scale using average shift factor function model.

B.12.2 Level 1b Verification

After verifying the limited data shifting procedure, attention is focused on Superpave ™ testing
on original-, RTFO-, and PAV-aged binders. Because the shear modulus data are desired under
the RTFO conditions for the mixture |E* predictions and because most tests performed on the
original-aged binder are also performed on the RTFO-aged binder, the primary model of interest
is the relationship between the PAV and RTFO binders. Such a model would then be applied to
the DSR tests at the intermediate temperatures and the BBR test results. The steps taken in

level 1b verification are as follows:

1.

Find DSR results under RTFO-aging conditions at 10 rad/s at 140, 158, and 176 °F
(60, 70, and 80 °C).

Find DSR results under PAV-aging conditions at 10 rad/s at 59, 77, and 95 °F (15, 25,
and 35 °C).

Find BBR results under PAV-aging conditions at 60 s at either -22, -11.2, and -0.4 °F
(-30, -24, and -18 °C) or at -11.2, -0.4, and 10.4 °F (-24, -18, and -12 °C).

Apply the PAR model from equations 92 or 93 to predict RTFO values for intermediate
temperature DSR results and BBR results.

Convert the BBR results to |G *| values using equation 89.

Determine the t-T shift factors using equations 81 and 82 or via the average shift
factor function.
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7. Fit the t-T shift factors to the WLF model using equation 79.

8. Optimize the CAM model coefficients to minimize the error between the DSR and
BBR results.

Typical analysis results for this method are shown in figure 119 and figure 120. A slight decrease
in the model strength is observed when compared to the level 1a verification, but in general, the
Superpave ™ only data analysis results show good agreement with the full analysis results across
all of the selected binders. The complete results of level 1b verification are summarized in

figure 121 and figure 122 for the phenomenological shift factor function model and in figure 123
and figure 124 for the average shift factor function in both normal and logarithmic scales.
Overall, the calibrated model shows an approximately 13 percent error, with the average absolute
error higher at 19 percent. As with level 1a verification, these numbers are comparable for both
of the t-T shift factor function models. Also, these results tend to show a smaller variability with
the average shift factor function model.
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Figure 119. Graph. Comparison of typical |G*| mastercurve characterized using full
database and Superpave™ only database plus PAR model.
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Figure 120. Graph. Comparison of typical t-T shift factors characterized using full
database and Superpave™ only database plus PAR model.
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Figure 121. Graph. Level 1b verification of limited data analysis procedure in arithmetic
scale using phenomenological shift factor function model.
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Figure 122. Graph. Level 1b verification of limited data analysis procedure in logarithmic
scale using phenomenological shift factor function model.
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Figure 123. Graph. Level 1b verification of limited data analysis procedure in arithmetic
scale using average shift factor function model.
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Figure 124. Graph. Level 1b verification of limited data analysis procedure in logarithmic

scale using average shift factor function model.

B.12.3 Level 2 Verification

Level 2 verification consists of data that have not been used in the development of either the
PAR model or the t-T shift factor relationship. In addition, it consists of only DSR data, but
the data cover the complete range expected in normal Superpave ™ DSR characterization. A
third level of verification that does not have the complete DSR data available is shown
subsequently. The FHWA ALF study binders used previously to verify the PAR model are
used for level 2 verification.

The steps taken in level 2 verification are as follows:

1.

Find DSR results under RTFO-aging conditions at 10 rad/s at the two standard temperatures
available that are closest to the high temperature PG of the binder—136.4 and 147.2 °F
(58 and 64 °C), 147.2 and 168.8 °F (64 and 76 °C), or 147.2 and 179.6 °F (76 and 82 °C).

Find DSR results under PAV-aging conditions at 10 rad/s at 59, 77, and 95 °F (15, 25,
and 35 °C).

Apply the PAR model from equation 92 to predict RTFO values for intermediate temperature
DSR results.

Determine the t-T shift factors using equation 81 or by using the average shift factor
function.

Fit the t-T shift factors to the WLF model using equation 79.
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6. Optimize the CAM model coefficients to minimize the error in the DSR results.

The major difference between level 1 and 2 verification is the lack of BBR data in the process.
Because it is shown earlier in this section that differences in |G*| mastercurves can be large

at temperatures below 41 °F (5 °C) when BBR data are not used for the calibration, only 41,
68, 105, and 129.2 °F (5, 20, 40, and 54 °C) data are used to analyze the differences in

level 2 verification.

The results of level 2 verification are shown in figure 125 through figure 128. The model
strength is good with an excellent coefficient of correlation. Both the average shift factor
function and the phenomenological model show good results. The average function performs
better in arithmetic space, and the phenomenological function appears to perform better in
logarithmic space.
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Figure 125. Graph. Level 2 verification of limited data analysis procedure in arithmetic
scale using phenomenological shift factor function model.
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Figure 126. Graph. Level 2 verification of limited data analysis procedure in logarithmic
scale using phenomenological shift factor function model.
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Figure 127. Graph. Level 2 verification of limited data analysis procedure in arithmetic
scale using average shift factor function model.

152



5‘_; 1.E+08 -

c

Q

£

[<})

5 1.E+06 -

(1)

4+

[<})

s

S 1.E+04 |

[t m )

]

R?=0.996
1.E+02 |
1.E+02 1.E+04 1.E+06 1.E+08

|G*| Predicted (Pa)
1 psi = 6.86 kPa

Figure 128. Graph. Level 2 verification of limited data analysis procedure in logarithmic
scale using average shift factor function model.

B.12.4 Level 3 Verification

The final verification level considered in this report is the verification of the analysis procedure
for DSR data that are not complete. Specifically, the data at high temperatures are assumed to be
unavailable. For this purpose, the FHWA mobile trailer database outlined in table 42 is used. As
with level 2 verification, BBR data are unavailable for calibration purposes, and 14 °F (-10 °C)
data are not included in the verification process. Without available high temperature data, it is
assumed that each binder receives its high temperature grade based on the RTFO-aged binder
(i.e., |G*|/sin(8) = 0.32 psi (2.2 kPa) exactly at the high PG). In addition, it is known that asphalt
binder has a phase angle of approximately 80 degrees at these high temperatures. These
assumptions imply that |G *| at the high temperature PG is 0.31 psi (2,166 Pa), which is used in
the fitting process.

The steps taken in level 3 verification are as follows:

1. Find DSR results under PAV-aging conditions at 10 rad/s at the three coolest temperatures
available for a given binder (see table 42).

2. Apply the PAR model using equation 92 to predict RTFO values for intermediate
temperature DSR results.

3. Assume |G* under RTFO conditions at the high temperature PG to be 0.31 psi (2,166 Pa).
4. Determine the t-T shift factors using equation 81 or via the average shift factor function.

5. Fit the t-T shift factors to the WLF model using equation 79.
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6. Optimize the CAM model coefficients to minimize the error in the DSR results.

The results of level 3 verification are shown in figure 129 through figure 132. From these
figures, it is observed that this dataset shows a reduction in predictability compared to the level 2
analysis but improved predictability as measured by R%. However, it should be noted that level 3
analysis does not include model data at 14 °F (-10 °C), while the two level 1 verification
analyses do include these 14 °F (-10 °C) data.
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Figure 129. Graph. Level 3 verification of limited data analysis procedure in arithmetic
scale using phenomenological shift factor function model.
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Figure 130. Graph. Level 3 verification of limited data analysis procedure in logarithmic
scale using phenomenological shift factor function model.

2.E+08
©
e
IS
o
S
o
=2 °
® 1.E+08
[«}) ° o,
= ° o

PS [ ]
: Y e e 4
] ~ °
° R?=0.894
0.E+00
0.0.E+00 1.0.E+08 2.0.E+08
|G*| Predicted (Pa)

1 psi=6.86 kPa

Figure 131. Graph. Level 3 verification of limited data analysis procedure in arithmetic
scale using average shift factor function model.
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APPENDIX C: AMPT VERSUS TP-62

C.1 EXPERIMENTAL VERIFICATION OF AMPT AND TP-62 DIFFERENCES

To assess differences in the measured moduli determined from the AMPT and TP-62 protocols, a
joint study was carried out between researchers at the Turner-Fairbank Highway Research Center
(TFHRC) and NCSU. For this study, TFHRC performed dynamic modulus testing on a mixture
following the AMPT TP, and NCSU performed testing on the same mixture using the TP-62
protocol.®) In both cases, three replicates have been tested. To reduce any variability not related
to the equipment and protocols, all specimens were fabricated at NCSU and randomly sampled
for either AMPT testing or TP-62 testing. The details of each testing protocol are summarized

in table 43.

Table 43. TP summary.

Factor AMPT TP-62
Temperature (°F) 40, 70, 100, and 130 14, 40, 70, 100, and 130
Frequency (Hz) 20, 10,5,1,0.5,and 0.1 |25,10,5,1,0.5,and 0.1
Microstrain target 75—-125 50-75
LVDT gauge length
(mm) 70 100
Load direction Bottom loading Top loading

Greased double latex
End treatment Teflon® membranes

External temperature
chamber, then equalize | Equalize for 2.5-3.0 h in

Conditioning in AMPT for 3 min test machine
Rest period between
frequencies (s) 0 300
NCHRP 09-29 NCHRP 09-29
Calculations final 10 cycles®” final five cycles®”

°C = (°F-32)/1.8
1 inch =25.4 mm

The mixture used for this purpose is a 0.371-inch (9.5-mm) Superpave ™ mixture typically used
in North Carolina for surface courses. The gradation of this mixture is given in figure 133, and
the relevant volumetric properties are summarized in table 44. All tests were conducted at

5.9 percent £0.1 percent air void levels.
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Figure 133. Graph. Test mixture gradation.
Table 44. Test mixture volumetric properties.
Mix Test
Volumetric Property Design | Samples
V, (percent) 3.8 5.9
VMA (percent) 15.6 17.5
VFA (percent) 75.7 66.2
Asphalt content (percent) 5.2 5.2
Percent effective binder content 4.9 4.9
Dust percentage 1.2 1.2
Gum 2.616 2.616
Bulk specific gravity of the aggregate 2.828 2.828
Effective specific gravity of the aggregate 2.855 2.855
Gy, 1.035 1.035

Results from the experimental study are summarized in figure 134 and figure 135, where the
average dynamic moduli from the TP-62 protocol are plotted against the average moduli from
the AMPT protocol. Error bars in these figures represent a single standard deviation from the
mean. From these figures, it is observed that the AMPT test results are systematically lower
than those from the TP-62 protocol; the difference between the two datasets is approximately

13 percent. Statistical analysis of these values using the step-down bootstrap method has also
been performed. This method is used in lieu of multiple paired #-tests due to the effect of
experimentwise error rates, which results in statistical errors when making multiple comparisons.
Specifically, failing to account for this error rate increases the probability of finding significance
when none is present. The statistical analysis results are shown by temperature and frequency in
table 45. Note that in this table, the conditions under which the means are statistically similar
are bold.
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Table 45. Statistical summary of AMPT and TP-62 test results.

|E*
Temperature | Frequency | AMPT | |E*| TP-62
(9} (Hz) (psi) (psi) p-Value

4 25.00|2,145,226 2,420,540 0.032
4 10.00 | 1,989,606 2,284,746 0.020
4 5.00 1,838,144 2,111,129 0.030
4 1.00| 1,503,747 1,726,774 0.026
4 0.50| 1,359,729 1,601,117 0.019
4 0.10 1,050,375 1,234,431 0.023
21 25.00 1,030,409 1,237,696 0.020
21 10.00| 899,831 1,022,446 0.023
21 5.00| 785,545 881,347 0.025
21 1.00| 550,882 628,569 0.033
21 0.50| 468,842 524,847 0.068
21 0.10| 306,841 358,120 0.057
37 25.00| 385,448 464,233 0.008
37 10.00| 318,540 384,219 0.010
37 5.00| 263,476 330,282 0.002
37 1.00| 160,938 198,110 0.008
37 0.50| 130,346 167,580 0.005
37 0.10 75,190 96,587 0.011
54 25.00| 153,735 177,050 0.003
54 10.00| 127,039 128,097 0.801
54 5.00) 102,669 101,164 0.672
54 1.00 58,086 59,737 0.377
54 0.50 42,997 48,863 0.022
54 0.10 23,863 33,547 0.005

°C = (°F-32)/1.8

1 psi = 6.86 kPa

Note: Bold text indicates conditions where means are statistically similar.

C.2 COMPARISON OF AMPT AND TP-62 PROTOCOLS WITH THE AVAILABLE
DATABASE

To assess the differences observed between the two |E*| measurement protocols, a more
comprehensive analysis was performed using the databases available in this study. The two
AMPT and TP-62 databases were segregated based on the temperatures at which the |E*| values
were measured. Because these two databases cover different ranges of parameters, it is useful to
examine the distribution of the relevant parameters for the two databases. Figure 136 through
figure 157 present the distribution and range of each parameter in the two databases. In

figure 158 through figure 162, the measured |E*| data points available for some specific
temperatures for each type of database are shown by frequency. Based on observations from
these figures and the difference equation shown in equation 100, differences between the
databases containing AMPT and TP-62 measurements are evident, as can be seen in table 46.
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Based on this description, the following differences are observed at each temperature:
e 40 °F (4.4 °C): 43.63 percent.
e 70 °F (21.1 °C): 57.84 percent.
e 100 °F (37.8 °C): 61.95 percent.
e 129 °F (53.9 °C): 46.26 percent.

e 130 °F (54.4 °C): 57.83 percent.
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Figure 136. Graph. Frequency distribution of temperature in AMPT versus
TP-62 databases.
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Figure 139. Graph. Range of loading frequency in AMPT versus TP-62 databases.
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Figure 140. Graph. Frequency distribution of percentage retained on 3/4-inch (19.05-mm)
sieve (p34) in AMPT versus TP-62 databases.
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Figure 141. Graph. Range of percentage retained on 3/4-inch (19.05-mm) sieve (P34) in
AMPT versus TP-62 databases.
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sieve (p33) in AMPT versus TP-62 databases.
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Figure 143. Graph. Range of percentage retained on 3/g-inch (9.56-mm) sieve (p3g) in
AMPT versus TP-62 databases.
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Figure 144. Graph. Frequency distribution of percentage retained on #4 sieve (p4) in
AMPT versus TP-62 databases.
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Figure 145. Graph. Range of percentage retained on #4 sieve (p4) in AMPT versus
TP-62 databases.
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Figure 146. Graph. Frequency distribution of percentage passing #200 sieve (P299) in
AMPT versus TP-62 databases.
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Figure 147. Graph. Range of percentage passing #200 sieve (p299) in AMPT versus
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Figure 148. Graph. Frequency distribution of specimen air voids in AMPT versus TP-62
databases.
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Figure 149. Graph. Range of specimen air voids in AMPT versus TP-62 databases.
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6000

5000

Number of Datapoints
w N
o o
o o
o o

N )
o o
S S
o S

Figure 152.

O0TP62 B AMPT

AMPT

TP62
TP62

TP62
AMPT

|
] P62

8 12 16 20 24
Voids in Mineral Aggregates (VMA), %

Graph. Frequency distribution of VMA in AMPT versus TP-62 databases.

169



TP62

25
OTP62 mAMPT 222 AMPT
20 19.9
TP62 AMPT
164 164
o 15
N TP62
< 10.8 AMPT
=
S0 | 9.5
5 -
0
Min Avg Max
Figure 153. Graph. Range of VMA in AMPT versus TP-62 databases.
7000
OTP62 B AMPT
6000 |
2
.S 5000
o
&
+ 4000 =
a =
53000 | =
2
€ 2000 © o &
S — F 0 £
P4 N o [ [
1000 | ~ © 2 B o N
© = ©
£ A = £ B

30 40 50 60 70 80 90 100
Voids Filled with Asphalt (VFA), %

Figure 154. Graph. Frequency distribution of VFA in AMPT versus TP-62 databases.
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Figure 159. Graph. Percentage of difference between AMPT versus TP-62 databases based
on similar ranges of different variables at 69.9 °F (21.1 °C).
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Figure 160. Graph. Percentage of difference between AMPT versus TP-62 databases based
on similar ranges of different variables at 100 °F (37.8 °C).
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Figure 161. Graph. Percentage of difference between AMPT versus TP-62 databases based
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Table 46. Percentage of difference between AMPT versus TP-62 database based on similar
ranges of different variables.

le-2 <
Temp 0<p3s | 5<p3s 30<p4 [3<p2o | 55V, 8< Vbeﬁf 12<VMA | 50 < VFA |G*|

(°F) <15 <50 <70 <7 <9 <14 <20 <80 <1e5
40 46.08 39.80 41.14 43.54| 42.75 45.65 44 81 44.29 43.60
70 59.39 47.54 51.74 57.66| 57.67 60.23 59.91 58.32 57.84
100 62.63 49.53 51.35 61.61| 63.38 64.49 64.36 62.66 61.95
129 45.60 51.02 49.65 46.26 N.A 63.01 46.16 52.09 46.26
130 57.55 40.76 44.14 57.46| 60.50 59.99 60.54 57.93 57.83

°C = (°F-32)/1.8

Similar ranges of each variable have been considered for each temperature, and the percentage
of error has been calculated based on the difference of average TP-62 versus AMPT |E*|
measurements for the corresponding temperature.

C.3 EVALUATION OF AMPT VERSUS TP-62 PROTOCOLS USING ANN MODEL

A preliminary study was conducted to determine the feasibility and predictability of the ANN
modeling technique relative to the existing models. This feasibility study was first conducted
based on |G* because more existing closed-form models use this parameter as their primary
input parameter. The ANN models used in this preliminary study are not the final models
suggested by the research team, but they are similar in form and validation. To ensure full
coverage of the expected conditions, the most recent Witczak database with available measured
|G*| data and a portion of the dataset obtained at NCSU with support from the NCDOT were
utilized as the TP-62 training database. Also, appropriate portions of the FHWA mobile trailer
database and the WRI database (from Kansas and Nevada sites) were considered as the AMPT
training database (see table 47).°'”? New parameters were not identified through this study.
Instead, only those that have been used in the modified Witczak model are incorporated. For
verification purposes, three different sets of independent databases were used (see table 48). As a
corollary to this study, an additional ANN model was trained that uses the Hirsch model input
parameters. The results from this model are given in this section, as well.

Table 47. Summary of database used for training ANN models.

AMPT TP-62
Type of Database FHWA 1 WRI Witczak | NCDOT I Total

Number of mixtures 409 24 106 24 563
Number of data points 7,827 500 3,180 644 12,151
Number of binders 13 8 17 5 43
Number of gradation

variations 13 12 13 19 57
Number of volumetric

variations 256 13 98 24 391

Note: FHWA I consists of the mixtures from 12 States in the FHWA mobile trailer database.
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Table 48. Summary of the database used for verification of ANN models.

AMPT TP-62
Type of Database FHWA 11 Citgo NCDOT 11 Total

Number of mixtures 84 8 12 104
Number of data points 1,652 168 338 2,158
Number of binders 3 2 3 8
Number of gradation

variations 3 1 12 16
number of volumetric

variations 75 1 12 88

Note: FHWA 1II consists of the mixtures from three States in the FHW A mobile trailer database

with the following site IDs: 1-IA0358, 2-WA0463, and 3-KS464.

It should be noted that the two TPs, AMPT and TP-62, were used to measure the |E*| values in
the various databases. To illustrate any possible differences between the two protocols, three
different ANNs were developed using the Witczak-based input parameters, as shown in table 49.
G-GR pANN was trained using data from both the AMPT and TP-62 protocols, whereas AMPT
pANN and TP-62 pANN models were trained using the data from AMPT only and TP-62 only.

Table 49 summarizes the databases used to train and verify the ANNSs.
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Table 49. Description of the developed ANN Models and their validation statistics.

Data Used in ANN Statistical Statistical Parameters for
Training Reference | Parameters for Verification Data
Model AMPT TP-62 Description Scale Training Data | FHWAII NCDOT II Citgo
Se/Sy =0.29| Se/Sy=0.38 Se/Sy =0.33 | Se/Sy=0.52
G-GRpANN  |PHWAL |Witczak Arithmetic R’ =0.92 Rzi 0.86 R’ =097 R’ =0.94
Se/Sy=0.15| Se/Sy=0.35 Se/Sy =0.27| Se/Sy=0.59
WRI NCDOT I Log R?=098| R?*=0.91 R*=0.96| R?=0.96
ANNs trained Se/Sy=0.24| Se/Sy=0.36 Se/Sy =0.63 | Se/Sy=0.37
AMPT pANN FHWA 1 with modified | Arithmetic 1§ = 094| R’ = 0.91 R’ = 087| R’ = 0.88
Witczak Se/Sy=0.16| Se/Sy=0.38| Se/Sy=0.60| Se/Sy=0.48
WRI parameters Log R*=0.97 R”=10.90 R’=0.89] R?*=091
Se/Sy=0.34| Se/Sy=2.08| Se/Sy=0.24| Se/Sy=1.20
TP-62 pANN Witczak Arithmetic R”=10.88 R*=10.77 R*=10.95 R?=10.97
Se/Sy=0.18| Se/Sy=0.99| Se/Sy=0.27| Se/Sy=0.53
NCDOT I Log R*=10.97 R*=10.82 R*=0.93 R?=10.99
Se/S); =0.92 Se/S)é =0.71 Se/S)é =0.64
. . Arithmetic R*>=091 R> =091 R”=0.98
ﬁgggﬁed Witczak Se/Sy =058 | Se/Sy=0.19| Se/Sy=0.26
Log R*=0.92 R*=098| R*=0.99
Se/S); =0.30 Se/S)é =0.47 Se/S)é =0.11
. Arithmetic R*=0.92 R*=0.97| R*=0.99
Hirsch Model Se/Sy=039| Se/Sy=026] Se/Sy=0.09
Log R*=0.92 R’=097| R*=0.99
Se/Sy =0.48 Se/Sy =0.55] Se/Sy=0.36
Al-Khateeb Arithmetic R”=0.89 R*=093| R*=0.93
Model Se/Sy=0.43| Se/Sy=0.40| Se/Sy=0.17
Log R*=10.92 R’=093| R*=0.97

Note: Blank cells indicate information is not applicable.




The ANN models perform well, as shown in figure 163 to figure 180, which display the
prediction accuracies of the different models for the combined AMPT and TP-62 data

(figure 163 to figure 168), TP-62 data only (figure 169 to figure 174), and AMPT data only
(figure 175 to figure 180). Also, these three groups of figures show the prediction accuracies of
the ANNs separately. In these three figures, the type of data (i.e., AMPT versus TP-62) used in
the ANN training matches the type of data used in the verification (e.g., figure 163 shows the
prediction accuracy of the G-GR pANN model trained with the combined AMPT and TP-62 data
on the combined AMPT and TP-62 data, etc.). It is noted that the data used in these figures were
not included in the ANN training.

Figure 181 through figure 204 further demonstrate the differences between the AMPT and the
TP-62 data and their effect on the prediction accuracies of the different ANNs. FHWA II data
used in figure 181 through figure 188 are obtained using the AMPT protocol. The TP-62 pANN
model trained with the TP-62 data and the modified Witczak model overpredict the measured
|E*| values. Figure 189 through figure 196 present the prediction results for the NCDOT II data,
which were measured using the TP-62 protocol. These figures illustrate the opposite effect on the
prediction bias, that is, the effect of using the TP-62 data in the ANN training and predicting the
AMPT data. In this case, the AMPT pANN model, trained using the AMPT data, underpredicts
the |E*| values. The G-GR pANN model provides a promising ANN-based |E*| model, and the
TP-62 pANN model shows good predictions without any significant bias. With the exception of
the Citgo dataset, the G-GR pANN model provides high goodness of fit and correlation, as seen
in table 49. The promising feature of the G-GR pANN model is that it improves the bias of |E*|
predictions, particularly at high and low temperatures. This new ANN model is more sensitive
to, and thus more likely to capture, the changes in volumetric parameters than all the other
existing predictive models.

The findings from figure 163 to figure 204 are summarized as follows:

e The |E* values measured by the AMPT protocol seem to be slightly different from those
measured by the TP-62 protocol. The |E*| predictive models developed using the |E*|
values measured by the TP-62 overpredict the |[E*| values measured by the AMPT.

e Overall, the G-GR pANN model, trained with the combination of the AMPT and TP-62
data, shows excellent statistics in terms of high accuracy and low bias, especially at
extremely high and low temperatures.
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Figure 163. Graph. Prediction of the combination of AMPT and TP-62 data using the
modified Witczak and G-GR pANN models in arithmetic scale.
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Figure 164. Graph. Prediction of the combination of AMPT and TP-62 data using the
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Figure 165. Graph. Prediction of the combination of AMPT and TP-62 data using the
Hirsch model in arithmetic scale.
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Figure 166. Graph. Prediction of the combination of AMPT and TP-62 data using the
Hirsch model in logarithmic scale.

180



1.2E+07
A Al-Khateeb
—LOE
28.0E+06 |
u
©
(]
5 4.0E+06 |-
©
;L_’ Al-Khateeb
R?=0.71, Se/Sy=0.65
0.0E+00 ‘
0.0E+00 4 .0E+06 8.0E+06 1.2E+07

Measured |[E*| (psi)
1 psi = 6.86 kPa

Figure 167. Graph. Prediction of the combination of AMPT and TP-62 data using the
Al-Khateeb model in arithmetic scale.
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Figure 168. Graph. Prediction of the combination of AMPT and TP-62 data using the
Al-Khateeb model in logarithmic scale.
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Figure 169. Graph. Prediction of the AMPT data using the modified Witczak and AMPT
PANN models in arithmetic scale.

1.E+07
O Modified Witczak
e AMPT pANN oo O
=1.E+06 || —LOE ¢9 22
o g o o
Bicas | ’
—1E+05 |
% B Modified Witczak
= | R?=0.93, S./S,=0.48
C1E+04 | o /Sy
£ g AMPT pANN
i R°=0.97, S,/S,=0.16
1E+03 o

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

Measured |E*| (psi)
1 psi=6.86 kPa
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Figure 171. Graph. Prediction of the AMPT data using the Hirsch model in
arithmetic scale.
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Figure 173. Graph. Prediction of the AMPT data using the Al-Khateeb model in

arithmetic scale.
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Figure 174. Graph. Prediction of the AMPT data using the Al-Khateeb model in
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Figure 175. Graph. Prediction of the TP-62 data using the modified Witczak and TP-62
PANN models in arithmetic scale.
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Figure 177. Graph. Prediction of the TP-62 data using the Hirsch model in arithmetic scale.
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Figure 179. Graph. Prediction of the TP-62 data using the Al-Khateeb model in
arithmetic scale.
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Figure 181. Graph. Prediction of the FHWA II data using the modified Witczak and G-GR
PANN models in arithmetic scale.
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Figure 182. Graph. Prediction of the FHWA II data using the modified Witczak and G-GR
PANN models in logarithmic scale.
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Figure 183. Graph. Prediction of the FHWA II data using the AMPT pANN and TP-62
PANN models in arithmetic scale.
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Figure 184. Graph. Prediction of the FHWA II data using the AMPT pANN and TP-62
PANN models in logarithmic scale.
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Figure 185. Graph. Prediction of the FHWA II data using the Hirsch model in
arithmetic scale.
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Figure 186. Graph. Prediction of the FHWA 11 data using the Hirsch model in
logarithmic scale.
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Figure 187. Graph. Prediction of the FHWA II data using the Al-Khateeb model in
arithmetic scale.
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Figure 188. Graph. Prediction of the FHWA II data using the Al-Khateeb model in
logarithmic scale.
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Figure 189. Graph. Prediction of the NCDOT II data using the modified Witczak and
G-GR pANN models in arithmetic scale.
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Figure 190. Graph. Prediction of the NCDOT II data using the modified Witczak and
G-GR pANN models in logarithmic scale.
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Figure 191. Graph. Prediction of the NCDOT II data using the AMPT pANN and TP-62
PANN models in arithmetic scale.
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Figure 192. Graph. Prediction of the NCDOT II data using the AMPT pANN and TP-62
PANN models in logarithmic scale.
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Figure 193. Graph. Prediction of the NCDOT II data using the Hirsch model in

arithmetic scale.
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Figure 194. Graph.
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Prediction of the NCDOT II data using the Hirsch model in

logarithmic scale.
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Figure 195. Graph. Prediction of the NCDOT II data using the Al-Khateeb model in
arithmetic scale.

1.E+07 ¢
- A Al-Khateeb
_ [ —LOE
‘w1.E+06 ¢
& :
E -
.51 E+05 g
‘9 B
0 I
1E+04 | Y.
o - Al-Khateeb
I R°=0.93, S,/S,=0.40
1.E+03 e

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Measured |[E*| (psi)
1 psi = 6.86 kPa

Figure 196. Graph. Prediction of the NCDOT II data using the Al-Khateeb model in
logarithmic scale.
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Figure 197. Graph. Prediction of the Citgo data using the modified Witczak and G-GR
PANN models in arithmetic scale.
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Figure 198. Graph. Prediction of the Citgo data using the modified Witczak and G-GR
PANN models in logarithmic scale.
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Figure 199. Graph. Prediction of the Citgo data using the AMPT pANN and TP-62 pANN
models in arithmetic scale.
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Figure 200. Graph. Prediction of the Citgo data using the AMPT pANN and TP-62 pANN
models in logarithmic scale.

197



6.E+06
O Hirsch
—LOE
)
L4 E+06 |
W
T
3
O 2E+06
T
o Hirsch
o 2
R*=0.99, S./S,=0.11
0.E+00 ‘
0.E+00 2.E+06 4. E+06 6.E+06

Measured |[E*| (psi)
1 psi = 6.86 kPa

Figure 201. Graph. Prediction of the Citgo data using the Hirsch model in arithmetic scale.
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Figure 202. Graph. Prediction of the Citgo data using the Hirsch model in
logarithmic scale.
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Figure 203. Graph. Prediction of the Citgo data using the Al-Khateeb model in
arithmetic scale.
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Figure 204. Graph. Prediction of the Citgo data using the Al-Khateeb model in
logarithmic scale.
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APPENDIX D: ANN MODEL FACTORS

D.1 INTRODUCTION

The ANN model developed herein contains a mapping ANN architecture and is based on
supervised learning. In the developed network, the learning method used is a feed forward back
propagation, which is one of the best known types of ANN models. The sigmoidal function,
which is shown in equation 101, was chosen as the transfer function. After an indepth
investigation of network configurations, it was found that the three-layer network with equal
nodes in the first two layers is the most appropriate configuration. All three ANN models share
some basic functions, which are shown in equations 101-105. Equations specific to the

Mpr ANN are equations 106—108, and equations specific to the GV ANN and VV ANN models
are equations 109—111. For equations 101-111, it should be understood that when a single index
is used, it indicates an array. When dual indices are used, they represent a matrix with the first
letter indicating the values in the row and the second letter indicating the values in the column.
Index i represents the number of input parameters, index k represents the number of nodes in the
first hidden layer, and index j represents the number of nodes in the second hidden layer. For the
Mpr ANN, [ represents the number of output values. All inputs are scaled to have a value between
-1 and 1. The normalization equation is shown in equation 112. Also, note that the Mz model
produces coefficients for the sigmoidal function and is provided in equation 113. The units of the
prediction are in megapascals as compared to pounds per square inch, which has been used
elsewhere in this report.

l+e (101)

S v (102)

Hy = f(Hy) (103)
=B+ W

kZ::‘ e (104)

H =f(H?}) (105)
0 =B+ W

o Z ! (106)

H} = f(H}) (107)
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(Sig, )max
(Sig;)
log | E*|
log | E*|

m

max

min

n

((Sig, )max - (Sig, )min) +

Sig, = (£} +1) : (Sig1) i
H*=B"+ iﬁlij
=
= f(H)
g7 = (17 +1) (8L e 10BN ) o

The placeholder variable.

The transfer function.

The value of the nodes at the first hidden layer.

The transferred value of the nodes at the first hidden layer.

The value of the nodes at the second hidden layer.

The transferred value of the nodes at the second hidden layer.

The value of output node / (Mz ANN).

The value of the output node (GV ANN and VV ANN).
The transferred value of the output node /, normalized output (Mz ANN).

The transferred value of the output node, normalized output (GV ANN and
VV ANN).

The input variables.

The weight factors for the first hidden layer.

The weight factors for the second hidden layer.

The bias factors for the first layer.

The bias factors for the second layer.

The bias factors for the outer layer (M ANN).

The bias factor for the outer layer (GV ANN and VV ANN).

Maximum value for sigmoidal coefficient / in the trained data (M ANN).
Minimum value for sigmoidal coefficient / in the trained data (Mz ANN).
Maximum log|E*| of the trained data (GV ANN and VV ANN).
Minimum log|E*| of the trained data (GV ANN and VV ANN).

The number of nodes in the first hidden layer (see table 21).

The number of nodes in the second hidden layer (see table 21).
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2(P - MIN,)

P =
' (MAXi —MIM) (112)
Where:
P = Given input variable, i.
ﬁ; = Normalized value for given input variable, i.
MIN; = Minimum value of i in calibration dataset.
MAX; = Maximum value of i in the calibration dataset.
S
log|E *| = Sig, + Zgi
I+ gSig3+Siga™log(fr) (113)
Where:
fr = Reduced frequency (hertz).
Sigy = First sigmoidal function coefficient.
Sigo = Second sigmoidal function coefficient.
Sigs = Third sigmoidal function coefficient.
Sigs = Fourth sigmoidal function coefficient.

Three ANN models have been developed from this architecture: (1) Mz ANN, (2) VV ANN, and
(3) |G*| ANN. In the following sections, the value of the weight factors, bias factors, input
parameters, and normalization parameters are given for each of these models.

D.2 My ANN
5 25 40
E:[MR My My o a 063] (114)
Where
Mg’ = Resilient modulus at 41 °F (5 °C) (megapascals).

Mz” = Resilient modulus at 77 °F (25 °C) (megapascals).
Mz" = Resilient modulus at 104 °F (40 °C) (megapascals).

a = Shift factor coefficient 1 (0.0007).
a, = Shift factor coefficient 2 (-0.1646).
log = Shift factor coefficient 3 (0.806).
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Table 50. W;' matrix elements for Mz ANN (part 1).

Element

Element i

1

2

3

-0.00200156589300513

0.00128692125170315

0.00284438217881075

0.28516256606761700

0.49118675435971600

-0.01820933290109810

-0.13012155717600300

0.07853842949381770

0.17680064334424700

-0.29231959611729100

0.17617282979184900

0.39775504273252700

-1.41445013310154000

6.44297995264973000

-1.77482643703439000

-0.21241167223734400

0.12821712282974400

0.28884600944520300

0.03400370099657090

-0.02101635307328680

-0.04672053052579720

0.09548185985586570

-0.05752189953709870

-0.13026426280596500

0.32507208708348800

-0.19505459789439700

-0.44164369167303300

0.28899439562768500

1.14183643175563000

1.48347522466600000

-0.98864001747551200

-2.86851244653187000

-3.23450809016547000

Y e = = =Sl BN - N RV R PN (O S

1.62092571912098000

-4.58381702398853000

2.21293392742914000

Table 51. W,-k1 matrix elements for Mz ANN (part 2).

Element

Element i

4

5

6

-712.8628402976380000

9.83219882009042000

-1.94319401017490000

753.53741515309100000

7.67671366971338000

-0.84350062295273200

-1093.068754047720000

9.23892947309088000

0.14382032104724800

-1129.557247424060000

-1.50590848559491000

-0.66955349262730300

-1.83158558608035000

3.97456523446851000

7.12208818273337000

-839.5292060420890000

8.73889517406220000

0.67603083268390200

755.74883976821200000

-12.71270279414850000

-1.34117207352107000

847.61568238744000000

-12.59290188069720000

-0.47503813284310300

410.33781806362100000

-7.80175950866107000

-2.36148957427579000

-805.5026910683050000

-4.21610143211805000

4.07885029040178000

471.04240973832900000

13.45559381618210000

-3.61642908665572000

o= |||y || B W= |

28.37591023338010000

12.28550446563640000

0.70805040715617700
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Table 52. B,' vector elements for Mz ANN (transposed for convenience).

Element

k B'

1 6.17091399170251000
2 7.71811183199239000
3 5.04220257285617000
4 1.36211474573909000
5 1.27586815658043000
6 1.24112853958781000
7 -0.55920953360997600
8 -1.54793233282465000
9 -2.38955526082692000
10 -5.31749985483251000
11 6.04452696422904000
12 2.43088472177158000

Table 53. ijz matrix elements for Mz ANN (part 1).

Element Element k

j 1 2 3 4

1 -1.27212265453448000f 0.98941325757367200|-1.90058367559899000-1.69308092227318000
2 2.24917988742036000| -1.47046066978322000| 2.81430927085362000| 2.35680695833274000
3 0.90938132410845800| -1.87010703846175000| 1.72113608938929000| 0.53365095186003000
4 0.71420875730581000] -2.02463155580309000| 1.24092642037176000|-0.75971225627055200
5 1.02573805084948000| -5.05227027803185000/-0.50811201125450400] 0.12398342947210100
6 2.87344198982080000 1.1825109019882500| 1.83686226283920000| 1.07343492432610000
7 -6.84673965801500000{ 8.75898275822440000(-6.07092164029969000}-5.61770119661654000
8 -0.27215636118304200| -0.71265020644285800| 0.10337231975487200(-0.50732389147556800
9 -1.24280778319817000| -0.42688724228155600|-1.49197352443203000| -1.1916709449455000
10 -0.87186156614646800| -0.55253243107747700] 0.01014336151285740}-1.38109064819317000
11 5.05262125180162000] -3.58899791830666000| 5.32477118646701000| 6.08771475391962000
12 1.94315627250074000(-11.72058718677100000| 1.02780825311488000(-0.07727872946434780
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Table 54. ijz matrix elements for Mz ANN (part 2).

Element

Element &

5

6

7

8

1.72171850082868000

-1.22361303255407000

0.26380146379060500

1.59052924999161000

-0.69983955029987400

2.15750218152474000

-2.72092291591448000

-2.56417332772541000

5.68303374707809000

-0.22567435819557400

-0.38683461689596400

-1.33743701004047000

-5.29792907293055000

-0.79868120409271800

0.56639895589096100

-0.15145370730044200

-6.9600412768491900

-0.25943738604012600

-0.07507398274261910

-0.60082153969042900

-6.90406457489009000

0.66048638607472900

-0.74734595052120800

-1.77757048725853000

14.28996210073420000

-4.93956480500064000

5.47678679301124000

5.04474379279507000

5.33401793234324000

-0.67814558115517500

1.35435682469839000

0.67517616517050400

6.13017525412482000

-0.25895030883091000

0.76688050726348400

0.59567627875874100

-4.52656667316437000

-0.61198000964802400

0.66990865283891800

1.79648574970781000

61.00473788943800000

5.94808205391293000

-6.49782178526526000

-5.63585227166289000

DD |S[o|o| o s{w|N| =~

-0.74313876146962200

-0.49502882731012100

-0.04343884290084600

0.43382323116577400

Table 55. ijz matrix elements for Mz ANN (part 3).

Element &

Element

9

10

11

12

1.28982526693395000

-1.36139827942535000

0.81242090814931100

0.75421177520166000

-1.98856516178736000

2.88665638759158000

-2.22345527946482000

47.32908703710720000

-1.46019991113224000

0.83288304533622300

-0.18737329755176000

7.94189735755131000

-0.62488286109702500

0.99358597783727000

-1.80707863873754000

-1.51697406306899000

-0.53491093234660500

0.03718852912964090

0.50412006696695100

-2.27324267108375000

-1.75495744905123000

0.04848011387017500

0.65137190325020200

-19.45130367879080000

6.34621810767813000

-4.33945264323816000

8.48179242696090000

-55.79280738270100000

-0.02703184429355360

-1.38007437316169000

-2.03641139073515000

7.15173377918400000

0.18219945071653500

-0.43950447308134000

0.88864139595275200

17.00276947159220000

0.18331101506990700

-1.29082311881848000

0.17907218849290100

0.00442335303199802

-4.70890802094776000

5.58102070625218000

-4.42512396747533000

34.44356640107110000

Y = b= N-TE=CI BN | I- N VR N [N S

-0.58348656053904200

11.76004227042600000

-18.62573141905100000

40.36522874277380000
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Table 56. sz vector elements for M ANN (transposed for convenience).

Element

BZ

0.69029100571690900

24.78083328475230000

-14.21641765871200000

0.59454387354854500

0.83441149973420900

2.00770642875969000

-6.80461833224959000

-3.04506035154618000

-2.81699338543501000

-0.01908957707522740

-23.82659200096020000

o=l |u| bW =~

-2.84950882850698000

Table 57. Wj13 vector elements for My ANN (part 1).

Element

Element j

1

2

3

4

1.55631817035049000

-6.71717964044816000

5.52866041884021000

-23.13533591138010000

-2.10815560445854000

5.53651802240772000

-4.20046449739353000

13.84767577640070000

10.42186407217690000

1.07658778061795000

-1.00952254919933000

1.35728376824998000

1
2
3
4

12.53270054290200000

-2.82666156182142000

0.36140292673336200

11.63883002692080000

Table 58. ij vector elements for Mz ANN (part 2).

Element
l

Element j

5

6

7

8

7.89233240566186000

3.41508482981355000

0.23067944090008000

-6.35835335516061000

-4.35253958227055000

-4.33105623723765000

-0.23450370767118300

4.90555584894330000

-0.53624851772844700

4.26302489876063000

0.18477243720173400

0.95437352582270800

1
2
3
4

-5.27378018192719000

12.58074218873790000

0.30883922900382400

-0.81566323458280500

Table 59. ij vector elements for My ANN (part 3).

Element

Element j

l

9

10

11

12

3.12448098517872000

7.76943031096589000

0.16915092735543200

17.81482352191000000

-4.10144987129725000

-8.41207948330685000

-0.13394241862122600

-14.80599826102690000

4.33224573662362000

-12.80943716195050000

0.05065733872668660

-2.21601216037733000

AW (N |—

12.62825381229430000

2.74268434100584000

0.08908525498240080

8.18232817352028000
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Table 60. Normalization parameters for Mz ANN.

Parameter | Maximum | Minimum
Mg’ (MPa) 34053.0 4800.3
Mz* (MPa) 15411.0 1081
Mp* (MPa) 6863.7 378.9
ai (1/°C?) 0.002400 | -0.000194
az (1/°C) -0.098 -0.300
as 1.430 0.490
Sig; (MPa) 2.660 -0.043
Sig» 4.700 1.500
Sigs 4.100 0.650
Sigu 0.850 0.260
B,°=[12.88483251257 -10.23705702365 -1.957618903369 3.273305236416] (115)
D.3 VV ANN
P=[f n VMA VFA| (116)
Where:
f = Frequency, Hz.
N = Viscosity, 10° P (10° Pas).
Table 61. W,-k1 matrix elements for VV ANN.
Element Element i
k 1 2 3 4
1 0.00275807935276415| 9.65414347487492000| 2.03545176382323000( 9.60483606710040000
2 0.00699289293419363 | 23.57848634613580000 |-14.68700301452580000| -7.85111160151172000
3 -29.85518987292190000| -0.01748605711868700| -0.05226790767927880| 0.10630299509262800
4 0.00272712204182532| 0.22756591526942600 | -0.44128805965281300| 0.51123020782505100
5 0.00885326169582901 2.81905088512526000 | -16.74274657827420000 | -11.51343150553350000
6 -0.00604496464330366 | -3.83323067510033000| -3.76213295881730000| -4.29370215749809000
7 0.00001271343965432|178.92786633284100000 | -0.00411385898011919| 0.00960133688419267
8 0.01990111297026090| -1.16149781971796000| 3.28168963629711000| 7.53282726564379000
9 0.01005974523187870| -0.39351960943073500| -2.51237935759967000| -4.29116433585095000
10 2.20552340599479000 | -0.04056518032735070| 0.20605359978971700| 0.15739161949478100
11 -0.02404084443474640| -6.58972054945535000| -0.71981980149770700| 1.52555084062215000
12 -0.00480809655510197| -0.27885745601162500| 0.20260632406742000| -0.77108867937747000
13 0.00078471111967578 | 28.44415144259920000| -0.87571840373706600| 1.95186725224564000
14 0.00771761131363787| 5.33676984624904000 |-11.97622550219350000| 7.71358914882133000
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Table 62. B,' vector elements for VV ANN (transposed for convenience).

Element

k B'

1 15.74835436269630000
2 12.95405722517280000
3 -32.89896917533040000
4 -1.10052248959346000
5 -10.78091133520380000
6 -6.05302142493261000
7 179.14709718593800000
8 0.65710599534106200
9 0.97891317883012100
10 4.72223785338294000
11 -6.55165918673815000
12 0.16731428319782600
13 27.93047751952220000
14 -1.37408939580495000

Table 63. ijz matrix elements for VV ANN (part 1).

Element Element &

j 1 2 3 4

1 0.10511744512798600| 0.10087889704665500| -6.08319321387257000| -6.59951922338895000
2 0.48485201906871100| -0.98061150567901500| 5.28213726518926000| -0.99307488071221600
3 0.38666686767509600| 0.14407696249404200| -0.64821237624430900| -0.68553604874521800
4 -0.29103025921087400| -0.12300943951262000| 0.20660407620275500| 0.84431006573009900
5 7.20145641626984000 | 151.58382852395500000 | -35.04225274891410000 | 50.31324421340920000
6 57.80869276380200000 | 45.53819717827600000 | 34.31952056143690000| 24.37102641478090000
7 0.04766296493976920| -0.00042062272941119| -1.64780015541921000| -0.14767680975504800
8 1.33157778260189000 | -0.00864139577441407 |-10.53694387134640000 |-28.77316964591470000
9 0.95432357054777500| -1.02389021831262000| 46.82499405300610000 | 61.27640626961720000
10 0.09476608746471290| -0.04013797559617900| 15.08416115539120000| 1.26248388850460000
11 0.65673641456535000| 25.30163159128400000| 6.86855242012598000 | 52.55865424871390000
12 -57.90977231272230000 | 57.64668837199080000 |-36.95301005956680000 |-51.19423424496710000
13 2.27010107107278000 | -2.76393198240337000| 14.26953262603660000 | 20.57219630346000000
14 -0.81442427169913900| -1.58075985235425000| 20.32130385637230000 |-21.37864285760230000
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Table 64. ijz matrix elements for VV ANN (part 2).

Element Element &

j 5 6 7 8

1 0.10958125840908900| 0.17103742786951300| 7.53738934561000000| 0.32157150848996400
2 1.10538840213556000| -0.06005243494707140| -0.46816179656466200 | -0.11362528740921000
3 -0.03668587237246070| -0.20195215673052800| 0.50583875586658800| 0.04117830356601680
4 0.04165310223654260| 0.12412276818401500| -0.71560911337291800 | -0.06643717805416860
5 -135.8256006242760000| 4.39896372970834000| 2.12048232621756000| 1.61468697764029000
6 12.18509505034930000| 4.51309256843370000| 7.19546156774681000 |11.77248078904480000
7 0.00470501377909039 | -0.00810109614328989 | -0.20468271977533900 | -0.00831305598572143
8 0.14429797312686300| 0.32443645525838900 | -18.31175213933740000 | -0.17988695146765000
9 0.48668670982841300| -1.06169701219564000| -0.47416257725070700| 2.01336853261287000
10 0.02124957257916830| -0.01491154156235320(214.20333131224300000| 0.05344273444888970
11 -16.55295761437330000 | 31.36367340855210000| 0.14069168225602600|20.67506639536700000
12 105.32395565518000000 | -68.59510275333000000 | -0.57180295407110300|24.60816018017130000
13 3.20913352965092000 | -1.46922615656989000| -0.45618908696155800 | -0.74587534667358800
14 2.14653394183588000| 2.86656902371875000| -1.38951291360800000| 1.51498306935364000

Table 65. ijz matrix elements for VV ANN (part 3).

Element Element &

J 9 10 11 12

1 0.67436953255572400| 1.52993707048353000 | -1.56378559364968000| -5.97316328323617000
2 0.83884786099458000| 0.72056843262828500| 0.33823343591634200| 0.32995739963357400
3 0.13129904885190400| 0.03393257336078320 | -0.33495422276929500| 1.21059369021165000
4 -0.08374413143914640| -0.14011290475212000 | 0.40330307484415800| -0.92068329846481200
5 -4.74183346589286000 | -7.18458646900432000 | -8.20175738069755000 | 21.46322182793860000
6 -2.22050947171933000 | -3.19929780229875000 | 43.60123067158340000 | -38.15447962643450000
7 0.04970822735474000| 0.38186826752702800| 0.02975701201504030| -0.07187684022207080
8 18.96102127708150000| 0.34577779423701500| 0.10112166202643200| -4.34637124684574000
9 136.10585968855900000 | 3.75489444791017000| 5.73368672918881000 | 35.37279289616110000
10 -0.36747370936357000| 1.90705035404089000 | -1.42366525777415000| 6.11736464999887000
11 -20.86114381473210000| 4.50957253702840000| 0.73758107479932900| -3.21435115847231000
12 -19.00772620196210000 | 44.26713771722670000 | 38.62379852233980000 | -1.87378784809568000
13 0.17584310006536200| 3.18528344468959000| 0.62107582578786300| 8.04752096583409000
14 2.97468553092343000 | -4.21086927843771000| 2.73490619946452000| -3.67293829703328000
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Table 66. ijz matrix elements for VV ANN (part 4).

Element

Element &

13

14

-1.12245731810529000

0.67867713986347200

0.41929338131065000

-1.37665914977400000

0.58160889599262400

0.36777315706927400

-0.51666057998473900

-0.35135512626691600

3.27948738968729000

1.94926465685885000

-45.89506402313440000

70.49683570639200000

0.01612131389179630

-0.01152122049407600

3.77564707007114000

-4.91896963383303000

3.89920658003942000

-49.40155143998830000

2.24644797717875000

-0.11299018277251500

-9.63227261518900000

-119.1073499783990000

-41.84530118313840000

-35.82982088240670000

0.56754251531620400

-3.01209559093347000

rlomlo|D|S|o|o|x|on v |w || =~

2.43256581696669000

-1.47837832821775000

Table 67. sz vector elements for VV ANN (transposed for convenience).
Element

B
-12.23193846569030000
0.61294509854138200
-2.26121589380006000
1.99708243932415000
22.07400990717020000
-31.86954422722210000
-2.41399982513437000
-55.27590960198670000
-106.0101552356340000
-30.89403826224180000
-76.24782342311330000
69.28157710468700000
20.21945409941280000
6.12083493792229000

mlolo=|ale|w Qo |u| bW =~
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Table 68. W}’ vector elements for VV ANN.

Element

j w?

1 1.15373219918479000
2 -6.43559921490721000
3 -27.68360314597900000
4 -29.84574981371640000
5 -0.19407309170597600
6 0.11995708036519800
7 37.96893504107600000
8 34.00719477253400000
9 0.43014683810727000
10 58.47886817741680000
11 11.94908594315590000
12 -0.07969689689272150
13 1.28313108040340000
14 0.53296310828566400

Table 69. Normalization parameters for VV ANN.

Parameter Maximum | Minimum
Frequency (Hz) 25 0.01
Viscosity (10°P) | 1.99 x 10° 27.00
VMA (percent) 34.64 9.51
VFA (percent) 95.07 32.82
|E*| (psi) 6.77 3.52

B’ =-3.484481025467

D.4 |G*|-BASED ANN (GV ANN)

P =[|G* M4 VFA]
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Table 70. W,-k1 matrix elements for GV ANN.

Element Element i

k 1 2 3

1 -0.00024607061578008 | 0.39573112252617300| 0.03137522820868100
2 0.06369415599503260| 1.20396485280366000| -0.41366999743116300
3 0.12560166488947000|12.23092512080170000 | -15.40428508265840000
4 144.78479285235900000 | 0.03602175009356860| -0.01486430375847190
5 -0.88590000706402800 | -6.64620868848810000| 6.76784019433308000
6 -0.24480066614146600 | -175.126570586870000 | 110.38396928012700000
7 0.35658487276453800| -1.13633711409192000| -2.69698652853612000
8 0.05160380299493010| 0.96914775793747200| -0.45058047297787600
9 -0.11763211836169300| -2.07308576925671000| 0.85862809150608600
10 -0.10260986412141000 | -1.89647330970902000| 0.63576557888985500
11 0.83832125440623900| 5.01864835388400000| -7.07830843630593000
12 -22.27016740128570000| 2.82680472067850000| -1.10402495920697000

Table 71. B:' vector elements for GV ANN (transposed for convenience).

Element

k B'

1 -13.23020275429390000
2 -1.15912963101547000
3 4.49668100338684000
4 144.90818089626700000
5 0.92374996199841500
6 187.12386013330800000
7 -0.64852041864182200
8 0.79297555520979200
9 1.27505357580263000
10 1.56260322810567000
11 -1.80964836750601000
12 -24.23180989095970000
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Table 72. ijz matrix elements for GV ANN (part 1).

Element Element &k

j 1 2 3 4

1 1.68662477353906000| 0.81911931325403900| -0.03005180291517210| 0.00569345005879186
2 -4.86360723468991000 | 105.69622449695400000 | -2.47849339660309000| 0.18455777935409300
3 91.15855920616590000| 92.66954611901590000 | -40.91260113059330000| -1.67503899696897000
4 106.61660556715000000 | 22.90152433894880000 | 229.56133863086000000| -0.21741320127254800
5 0.73120568649091500| -2.04683544732935000| 0.02907899740128110| -0.00680956721358145
6 20.01334655907270000 | -124.1136850495880000 | -12.93483076443820000| 0.16320420801843400
7 11.03261781901980000 | -55.35942281688430000 | -0.25840813426995300| 2.36249059396197000
8 6.30522135450740000 | -72.37646707852670000 | -2.13173103347156000| 23.41004001398310000
9 -34.10766755925970000 | 26.04890333595410000| 0.13622620891216500 |-534.4781944799400000
10 -18.68321667137760000 | 103.90356571837300000 | -2.46159833726818000| 0.18433171253622200
11 19.14302423015890000| 3.59998964741180000| 0.25399603119775500 |-44.54673896061580000
12 -0.33713658604817700| 12.87184727785630000| 0.13134300289504600| 6.54659549746008000

Table 73. ijz matrix elements for GV ANN (part 2).
Element Element &k

J 5 6 7 8

1 0.01859496903873790 | 7.79141326044631000 0.01459371336584290| -4.01406752777277000
2 30.71090633980400000 | 5.37671972945662000 3.18886351743859000| -2.85108340883822000
3 87.71359895456880000 | -77.08967734352910000 | 22.84350940748950000 |335.75204711704400000
4 68.74692689690920000 | -45.87194063996940000 | 12.79313464511960000 | -37.77625414085690000
5 -0.0094809359102436 | -1.94014227142969000 -0.01256576806807960| 4.16910051124176000
6 -37.35043967525970000 | 5.27365300784224000 1.31038988899583000| 43.16167413535480000
7 91.10288269578740000 | -29.48793850026970000 -0.04849305692638800| 3.23868144074583000
8 3.53501265914675000| 0.83322882269153700 1.62246929641914000| 6.69105720723216000
9 -0.09814064912135180| -0.02099590067358970 -0.19796523923434900| 17.65358100702660000
10 55.61599363732450000| -5.35164182127019000 3.15862176137102000| -2.82977620499617000
11 -0.30334853272738200 | 43.07269450273440000 -0.22059949976226000 1.05780537005262000
12 0.11377535318423100| 0.11441693675638400 0.15289220845030100| -1.13970260089778000
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Table 74. ijz matrix elements for GV ANN (part 3).

Element Element &

j 9 10 11 12

1 3.47596025162077000| -3.82827454649034000| 0.01169888530415500| 0.12954405222771200
2 94.55869709663890000 | -7.34809568152935000| 10.41344790169180000 | 21.32866301200200000
3 205.23211172111800000 | -34.98627953103440000 | 76.29312010940660000 | -30.59094661558560000
4 64.60376447639590000 | -21.68091976305070000 | 66.41011966659030000 |-26.22110679142560000
5 0.08966925765449130| -0.90205636358616400| -0.00585495017589258 | 0.00011267457317091
6 12.38797404837280000 | -96.26501641581090000 | -37.17032464251540000| 0.12957951502862800
7 -50.14112337006290000 | -8.38137267965061000 | 40.93959435883270000 | -0.32474898284932000
8 -55.82517744922910000 | -57.75954730123160000 | 2.17269724264550000 | -54.42459642341290000
9 -1.13861767294711000| 6.61476050123734000| 0.25450956423993600| -1.38236982388117000
10 93.41332136138760000| -9.48311646261710000| 49.01504550800940000 | 20.79054924536240000
11 2.55740586147654000| 2.61695086136455000| -0.09940520779407240| 3.00291187179692000
12 4.67064477635346000 | 8.20560279728423000| 0.10724854309492400| 3.33502620583327000

Table 75. sz vector elements for GV ANN (transposed for convenience).

Element

j B

1 -3.02263601315923000
2 5.97704828771739000
3 -91.56648216379910000
4 -106.5989770883490000
5 -0.36740268358330700
6 -20.04954785032860000
7 -10.42449435680280000
8 -5.32258083806398000
9 32.81032420706510000
10 17.56993360741350000
11 -20.65675932973890000
12 2.35956011260892000
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Table 76. ;' vector elements for GV ANN.

Element

j w?

1 -134.7651195030360000
2 92.96416099463190000
3 0.07847134028534860
4 0.58725325729413100
5 -146.9138139427070000
6 -12.15444670634670000
7 34.34304769221520000
8 -63.09541362586340000
9 -76.62381419958460000
10 -93.21865080014820000
11 -29.95120632059920000
12 0.71757242259101300

Table 77. Normalization parameters for GV ANN.

Parameter Maximum | Minimum

|G*| (psi) 676,000 0.0293

VMA (percent) 22.21 9.51

VFA (percent) 95.07 32.82

|E*| (psi) 6.81 3.52
B" =-8.469734576039 (119)
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APPENDIX E: ANNACAP SOFTWARE MANUAL

E.1 INTRODUCTION

The Artificial Neural Networks for Asphalt Concrete Dynamic Modulus Prediction
(ANNACAP) program has been developed under Contract No. DTFH61-02-00139 Task Order
#10 LTPP Computed Parameter Dynamic Modulus to aid in populating the LTPP database with
dynamic modulus data. Technical details concerning the analysis used in this program can be
found in the final report for the referenced project. The purpose of this document is to provide a
manual of operation for the ANNACAP program.

The dynamic modulus, |E*|, is a fundamental property that defines the stiffness characteristic of
hot mix asphalt (HMA) mixtures as a function of loading rate and temperature. The significance
of this material property is threefold. First, it is one of the primary material property inputs in the
Mechanistic-Empirical Pavement Design Guide (MEPDGQG) and software developed by NCHRP
Project 1-37A. The MEPDG uses mastercurves and time-temperature shift factors in its internal
computations. The mastercurve is constructed using a hierarchical structure of inputs ranging
from laboratory tests on HMA mixtures and binders to estimates based on properties of the HMA
mixtures. Second, the |[E*| is one of the primary HMA properties measured in the Superpave' ™
simple performance test protocol that complements the volumetric mix design. Third, |E*| is one
of the fundamental linear viscoelastic (LVE) material properties that can be used in advanced
HMA and pavement models that are based on viscoelasticity.

In spite of the demonstrated significance of |E*|, it is not included in the current LTPP materials
tables because the database structure was established long before |E*| was identified as the main
HMA property in the MEPDG. It is not practical to perform MEPDG level 1 laboratory |E*| tests
on material samples from LTPP test sections at this time due to a lack of materials, budget
limitations, and the absence of a suitable test method applicable to field samples obtained from
relatively thin pavement structures. However, the LTPP database does contain other data that can
be used to estimate the |[E* mastercurve and associated shift factors, estimate the |E*| at specific
load durations and temperatures, or develop inputs to the models contained in MEPDG.

E.2 DISCLAIMER

This software is provided “as is,” and any express or implied warranties, including but not
limited to the implied warranties of merchantability and fitness for a particular purpose, are
disclaimed. In no event shall the authors be liable for any direct, indirect, incidental, special,
exemplary, or consequential damages (including, but not limited to, procurement of substitute
goods or services; loss of use, data, or profits; or business interruption) however caused and in
any way theory of liability, whether in contract, strict liability, or tort (including negligence or
otherwise) arising in any way out of the use of this software, even if advised of the possibility of
such damage.
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E.3 INSTALLATION INSTRUCTIONS

1. Insert ANNACAP Installation CD into the CD ROM or download zipped installer file from
Web site. Note: If downloading the file, remember the location where you have unzipped the

files.

2. If the CD does not autorun, press the Windows Start button.
3. Click on Run.

4. Change the directory to the location of the installer file (either the CD ROM drive or the
unzipped file locations.

5. Select the Setup program.

6. Press OK.

7. Follow the onscreen instructions.

8. ANNACAP and all necessary support files will be installed.

9. A shortcut will be placed in the start menu under the Programs = ANNACAP path. To place
a shortcut onto the desktop, users must manually perform the operation.

E.4 USING ANNACAP
E.4.1 Program Main Screen

The main ANNACAP screen is shown in figure 205. This screen appears when ANNACAP is
launched. All analysis is menu-driven, and the menu schematic is shown in figure 206. To
perform modulus predictions, users must provide the necessary inputs by following the File =2
Input path (described in detail below). Users must also provide a directory for output to be
written by following the File = Output Directory path. Once both have been properly input,
users may perform data analysis by following the File = Run Analysis path. Users may access
this document by following the Help = Manual path or find basic program information by
choosing the Help = About path.
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File Help

Artificial Neural Networks for Asphalt Concrete
Dynamic Modulus Prediction

Version 1.1

Provide inputs and set owtput directony

NICHOLS
CONSULTING
ENGINEERS

Figure 205. Screenshot. ANNACAP main screen.

— File

— Input Data
— Run Analysis
— Output Folder
— EXxit

— Help

— Manual

— About

Figure 206. Illustration. ANNACAP menu diagram.

E.4.2 Input Data

Selecting the File = Input path will automatically launch the input utility. The initial screen shot
is shown in figure 207. Users have four modes to choose from: (1) Mz-based ANN, (2) |G*|-
based ANN, (3) viscosity-based ANN, and (4) batch mode. The screen is divided into two
regions referred to as the left side and right side and separated by bordered regions. On the left
side are areas for inputting basic information for the nonbatch mode runs, choosing the mode to
use, and choosing the input parameter complexity to use. On the right side are inputs specific to
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the chosen analysis mode. Necessary inputs will appear on both the left and right sides of the
screen as users make selections. After selecting all of the appropriate factors and entering all
necessary inputs, pressing “Done” on the menu bar will return users to the main ANNACAP
screen. Note that all modes will produce |E*| predictions at 14, 40, 70, 100, and 130 °F (-10, 4.4,
21.1,37.8, 54.4°C) and 25, 10, 5, 1, 0.5, and 0.1 Hz.

Input Parameters

Layer ID Mr Measured on Mixture

Resilient Modulus
State Code (GPa)

Project ID 5 Degrees
. Celsius
Project Layer 25 Degrees

Construction Date Celsius

40 Degrees
Aging Level Unaged [=] Celsgius

Model

Model to Use Mr Based ANM [+

Figure 207. Screenshot. ANNACAP input screen.

E.4.3 Layer ID
Under the Layer ID section, users should enter the following items:

e State code.

e Project ID.

e Project layer.

e Construction date.

e Aging level (only RTFO aging is available for certain models).

e Test date (only if “Other” aging level is chosen).
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The naming convention for these items is the same as that followed in the LTPP database. Users
may choose to enter the dates directly into the appropriate boxes and, if they do so, the format
should be Day-Abbreviated Month-Year (i.e., 20-Mar-1985). Users wishing to use the calendar
utility should press the Choose button beside the date box and navigate to the appropriate date.
When the appropriate date is chosen, users must press the OK button.

E.4.4 Mr-Based ANN

Selecting Mz-based ANN from the model drop-down menu will allow users to develop |E*|
predictions based on My inputs. On the right side of the screen, users must enter My values in
gigapascals at three specific temperatures (41, 77, and 104 °F (5, 25, and 40 °C)) into the
provided table. The appropriate input ranges for these values are as follows:

o 41°F (5°C)=4,938,970.10 to 696,224.65 psi (34.053 to 4.8003 GPa).
o 77°F (25°C)=2,235,176.58 to 156,785.79 psi (15.411 to 1.0810 GPa).
e 104 °F (40 °C) = 995,495.52 to 54,954.80 psi (6.8637 to 0.3789 GPa).

Inputting values outside this range will cause ANNACAP to display a warning indicating that
input values exceed the calibration range, but predictions will still be made. Users should also
select the aging condition for the measured My values.

E.4.5 |G*-Based ANN

Selecting |G*|-based ANN from the model drop-down menu will allow users to develop |E*|
predictions based on |G*| inputs. There are three different levels of input complexity: level 1,
level 2, and level 3. For each level, users should input the percentage of voids in mineral
aggregate (VMA) and percentage of voids filled with asphalt (VFA) in addition to |G *| values.
The appropriate ranges for these input variables are shown beside the input controls. For all input
levels, ANNACAP will use the CAM model to generate a mastercurve of the data. Users may
choose to force the CAM model to fit the data with a certain glassy modulus value by choosing
Input from the Find G, by drop-down menu. If Input is chosen, the default value is
145,037.74 psi (1 GPa), but users may change it to any desired value. If users choose Fitting
from the Find G, by drop-down menu, then the glassy modulus is treated as any other
optimization parameter. If no data are available at extremely low temperatures (below 32 °F

(0 °C)), users are recommended to choose Input and select a value between 145,037.74 and
1,450,377.38 psi (1 and 10 GPa). If for some reason a fitting error occurs with the provided
input, the program will display a fitting error dialog and not allow users to predict |[E*|. If the
calculated |G*| is greater than 675,875.86 psi (4.66 x 10° Pa) or less than 0.029 psi (202 Pa), a
warning dialog will appear, but |E*| predictions will be performed.

E.4.5.1 Level 1

For level 1, users have access to complete |G *| values at multiple temperatures and frequencies.
These values should be entered directly into the table that appears on the right side of the screen.
Users may choose to create this data file in another application and load it into the table by using
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the Load button. The file should be a tab delimited text file with the same column format as the
input table. The file should have column labels.

E.4.5.2 Level 2

For level 2, users have access to |G*| values and possibly BBR stiffness values at multiple
temperatures (at least two above 114.8 °F (46 °C) and two below 114.8 °F (46°C)) but at the
fixed frequency of 10 rad/s and load time of 60 s. All of the measured moduli values should
be at a consistent aging level. The |G*| values are entered in units of kilopascals, whereas the
S(¢) values are entered in units of megapascals following convention. The temperature is
always entered in degrees Celsius. Users should enter the values into the tables on the right
side of the screen.

E.4.5.3 Level 3

For level 3, users have access to |G*| values and possibly BBR stiffness values at multiple
temperatures (at least two above 114.8 °F (46 °C) and two below 114.8 °F (46 °C)) at a fixed
frequency of 10 rad/s and load time of 60 s. The aging conditions are a mixture of RTFO and
PAV. The units are the same as those used in level 2 input. In addition to entering these values,
users should choose the high temperature Superpave ™ PG for the binder from the High Temp
PG drop-down menu. If this information is not known or cannot be determined, users may select
Unknown from the drop-down menu. In Level 3 analysis, only the RTFO-aging conditions may
be predicted.

E.4.6 Viscosity-Based ANN

Selecting Viscosity-based ANN from the model drop-down menu will allow users to develop
|E*| predictions based on viscosity inputs. There are three different levels of input complexity:
level 1, level 2, and level 3. For each level, users should input the VMA and VFA. The
appropriate ranges for these input variables are shown beside the input controls. If the calculated
viscosity is less than 199,000 cP (199 Pas), a warning dialog will appear, but |E*| predictions will
be performed.

E.4.6.1 Level 1
In level 1, users enter A and VTS values directly into the right side of the screen.
E.4.6.2 Level 2

In level 2, users choose the types of viscosity measures available by selecting or deselecting the
radio buttons on the left side of the screen. The available measures include: R&BT temperature,
penetration, absolute viscosity, and kinematic viscosity. Selecting or deselecting these measures
will make appropriate input tables or controls appear on the right side of the screen. Following
standard convention, the R&BT temperature is given in degrees Fahrenheit, the penetration is
given by the PEN number, the absolute viscosity is input in poise, and the kinematic viscosity is
input in centistokes. If users select kinematic viscosity, then they must also enter the binder-
specific gravity in the G control. By default, ANNACAP inputs 1.03 for G,. Users must input at
least two measures of viscosity so that A and VTS can be computed.
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E.4.6.3 Level 3

In level 3, users choose the binder grade. Typical values compiled during the NCHRP 1-37A
project are available, and the binder grades can be either Superpave™ -based, viscosity-based
(AC system only), or penetration-based. The binder grade-to-viscosity relationship is
summarized in table 78.

Table 78. Relationship between binder purchase specification grade and

A and VTS parameters.
Asphalt
Binder Asphalt
Grade A VTS | Binder Grade A VTS
PG 46-34 | 11.5040| -3.9010 PG 70-28| 9.7150| -3.2170
PG 46-40 | 10.1010| -3.3930 PG 70-34| 8.9650| -2.9480
PG 46-46 8.7550| -2.9050 PG 70-40| 8.1290| -2.6480
PG 52-10 | 13.3860| -4.5700 PG 76-10| 10.0590| -3.3310
PG 52-16 | 13.3050| -4.5410 PG 76-16| 10.0150| -3.3150
PG 52-22 | 12.7550| -4.3420 PG 76-22| 9.7150| -3.2080
PG 52-28 11.8400| -4.0120 PG 76-28| 9.2000| -3.0240
PG 52-34 | 10.7070| -3.6020 PG 76-34| 8.5320| -2.7850
PG 52-40 9.4960 | -3.1640 PG 82-10| 9.5140| -3.1280
PG 52-46 8.3100| -2.7360 PG 82-16| 9.4750| -3.1140
PG 58-10 | 12.3160| -4.1720 PG 82-22| 9.2090| -3.0190
PG 58-16 | 12.2480| -4.1470 PG 82-28| 8.7500| -2.8560
PG 58-22 | 11.7870| -3.9810 PG 82-34| 8.1510| -2.6420
PG 58-28 11.0100| -3.7010 AC-2.5]11.5167| -3.8900
PG 58-34 | 10.0350| -3.3500 AC-5]11.2614| -3.7914
PG 58-40 8.9760| -2.9680 AC-10| 11.0134| -3.6954
PG 64-10 | 11.4320| -3.8420 AC-201 10.7709 | -3.6017
PG 64-16 | 11.3750| -3.8220 AC-31]10.6316| -3.5480
PG 64-22 | 10.9800| -3.6800 AC-401 10.5338 | -3.5104
PG 64-28 10.3120| -3.4400 PEN 40-50| 10.5254| -3.5047
PG 64-34 9.4610| -3.1340 PEN 60-70| 10.6508 | -3.5537
PG 64-40 8.5240| -2.7980 PEN 85-100| 11.8232| -3.6210
PG 70-10 | 10.6900| -3.5660| PEN 120-150| 11.0897| -3.7252
PG 70-16 | 10.6410| -3.5480| PEN 200-300| 11.8107| -4.0068
PG 70-22 | 10.2990| -3.4260 — — —

— Indicates that no additional relationships exist.
E.5S BATCH MODE

In batch mode, users enter four different files for the four different aging levels: (1) unaged or
original binder data file, (2) RTFO-aged binder file, (3) PAV-aged binder file, and (4) field-aged
binder file. Each file must be a tab delimited text file in order for ANNACAP to read the file.
The file should have a header. Even if no data are available for some aging conditions, a file
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name must be entered into the directory path on the right side. The formatting for the original-,
RTFO-, and PAV-aged conditions, collectively referred to as the lab-aged files, is different than
the formatting for the field-aged binder file. The formats for the two files are presented in

table 79 and table 80. Users may also view the format by selecting either the Format for Lab-
Aged File or Format for Field-Aged File buttons.
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Table 79. File format for lab-aged files.

Item

Description

STATE CODE

Code representing State or province

PROJECT ID

Project ID code

PROJECT LAYER

Project layer code as established in TST LO5B

CONSTRUCTION DATE

Date layer was constructed

SAMPLE TYPE

I—original binder, 2-RTFO/TFO binder, 3-PAV binder

SAMPLE DATE

Date of sampling

TEST DATE

Date of testing

GSTAR 1

Binder |G*| at temperature 1 (kPa)

GSTAR PHASE ANGLE 1

Phase angle at temperature 1 (degree)

GSTAR TEMP 1

|G * temperature 1 (°C)

GSTAR 2

Binder |G*| at temperature 2 (kPa)

GSTAR PHASE ANGLE 2

Phase angle at temperature 2 (degree)

GSTAR TEMP 2

|G * temperature 2 (°C)

GSTAR 3

Binder |G*| at temperature 3 (kPa)

GSTAR PHASE ANGLE 3

Phase angle at temperature 3 (degree)

GSTAR TEMP 3

|G *| temperature 3 (°C).

GSTAR 4

Binder |G*| at temperature 4 (kPa)

GSTAR PHASE ANGLE 4

Phase angle at temperature 4 (degree)

GSTAR TEMP 4

|G *| temperature 4 (°C)

GSTAR 5

Binder |G*| at temperature 5 (kPa)

GSTAR PHASE ANGLE 5

Phase angle at temperature 5 (degree)

GSTAR TEMP 5

|G *| temperature 5 (°C)

GSTAR 6

Binder |G*| at temperature 6 (kPa)

GSTAR PHASE ANGLE 6

Phase angle at temperature 6 (degree)

GSTAR TEMP 6

|G *| temperature 6 (°C)

GSTAR _SOURCE

LTPP module from which |G*| was extracted (i.e., TST)

RING BALL

Ring/ball temperature in Fahrenheit

RING BALL SOURCE

LTPP module from which TR&B was extracted (i.e.,
TST)

PENETRATION 39.2F

Penetration at 39.2 °F (PEN)

PENETRATION 39.2F SOURCE

LTPP module from which PEN at 39.2 °F was extracted
(i.e., TST)

PENETRATION 77F

Penetration at 77 °F (PEN)

PENETRATION 77F SOURCE

LTPP module from which PEN at 77 °F was extracted
(i.e., TST)

PENETRATION 115F

Penetration at 115 °F (PEN)

PENETRATION 115F SOURCE

LTPP module from which PEN at 115 °F was extracted
(i.e., TST)

ABSOLUTE VISCOSITY

Absolute viscosity at 140 °F (poise)

ABSOLUTE VISCOSITY SOURCE

LTPP module from which absolute viscosity was
extracted (i.e., TST)
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KINEMATIC VISCOSITY

Kinematic viscosity at 275 °F (centistokes)

KINEMATIC VISCOSITY SOURCE

LTPP module from which kinematic viscosity was
extracted (i.e., TST)

VMA

Voids in mineral aggregate as percent total volume

LTPP module from which VMA was extracted

VMA SOURCE (i.e., TST)

VFA Voids filled with asphalt as percent VMA
LTPP module from which VFA was extracted

VFA SOURCE (i.e., TST)

AIR VOIDS Air voids as percent total volume

AIR VOIDS SOURCE

LTPP module from which air voids was extracted
(i.e., TST)

GMB Bulk-specific gravity of the mix.

GMB SOURCE LTPP module from which G, was extracted (i.e., TST)
GMM Maximum specific gravity of the mix

GMM SOURCE LTPP module from which G,,,, was extracted (i.e., TST)

EFFECTIVE AC

Effective asphalt content as percentage of total mix
volume

EFFECTIVE AC SOURCE

LTPP module from which the effective volume of the
binder (V) was extracted (i.e., TST)

MR 5 Resilient modulus at 5 °C (GPa)

MR 25 Resilient modulus at 25 °C (GPa)

MR 40 Resilient modulus at 40 °C (GPa)

MR SOURCE LTPP module from which My was extracted (i.c., TST)

BINDER GRADE

Purchase specification grade of binder (RTFO aging
only)

°C =(°F-32)/1.8
1 P=10 Pas
1 psi=6.86 kPa
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Table 80. File format for field-aged files.

Item

Description

STATE CODE

Code representing State or province.

PROJECT ID

Project ID code.

PROJECT LAYER

Project layer code as established in TST LOSB.

CONSTRUCTION DATE

Date layer was constructed.

SAMPLE TYPE

Four-field-aged binder.

GSTAR_SAMPLE DATE

Date of sampling for |G*.

GSTAR 1

Binder |G*| at temperature 1 (kPa).

GSTAR PHASE ANGLE 1

Phase angle at temperature 1 (degree).

GSTAR TEMP 1|

|G*| temperature 1 (°C).

GSTAR 2

Binder |G*| at temperature 2 (kPa).

GSTAR PHASE ANGLE 2

Phase angle at temperature 2 (degree).

GSTAR TEMP 2

|G*| temperature 2 (°C).

GSTAR 3

Binder |G*| at temperature 3 (kPa).

GSTAR PHASE ANGLE 3

Phase angle at temperature 3 (degree).

GSTAR TEMP 3

|G*| temperature 3 (°C).

GSTAR 4

Binder |G*| at temperature 4 (kPa).

GSTAR PHASE ANGLE 4

Phase angle at temperature 4 (degree).

GSTAR TEMP 4

|G*| temperature 4 (°C).

GSTAR 5

Binder |G*| at temperature 5 (kPa).

GSTAR PHASE ANGLE 5

Phase angle at temperature 5 (degree).

GSTAR TEMP 5

|G*| temperature 5 (°C).

GSTAR 6

Binder |G*| at temperature 6 (kPa).

GSTAR PHASE ANGLE 6

Phase angle at temperature 6 (degree).

GSTAR TEMP 6

|G*| temperature 6 (°C).

GSTAR SOURCE

LTPP module from which |G*| was extracted
(i.e., TST).

BINDER SAMPLE DATE

Date of sampling for viscosity.

RING BALL

Ring/ball temperature in Fahrenheit.

RING BALL SOURCE

LTPP module from which TR&B was extracted
(i.e., TST).

PENETRATION 39.2F

Penetration at 39.2 °F (PEN).

PENETRATION 39.2F SOURCE

LTPP module from which PEN at 39.2 °F was
extracted (i.e., TST).

PENETRATION 77F

Penetration at 77 °F (PEN).

PENETRATION 77F SOURCE

LTPP module from which PEN at 77 °F was
extracted (i.e., TST).

PENETRATION 115F

Penetration at 115 °F (PEN).

PENETRATION 115F SOURCE

LTPP module from which PEN at 115 °F was
extracted (i.e., TST).

ABSOLUTE VISCOSITY

Absolute viscosity at 140 °F (poises).
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ABSOLUTE VISCOSITY_ SOURCE

LTPP module from which absolute viscosity was
extracted (i.e., TST).

KINEMATIC VISCOSITY

Kinematic viscosity at 275 °F (centistokes).

KINEMATIC VISCOSITY SOURCE

LTPP module from which kinematic viscosity was
extracted (i.e., TST).

VMA

Voids in mineral aggregate as percent total volume.

LTPP module from which VMA was extracted

VMA SOURCE (i.e., TST).

VFA Voids filled with asphalt as percent VMA.
LTPP module from which VFA was extracted

VFA SOURCE (i.e., TST).

AIR VOID SAMPLE DATE

Date of sampling for air voids.

AIR VOIDS

Air voids as percent total volume.

AIR VOIDS SOURCE

LTPP module from which air voids was extracted
(i.e., TST).

GMB Bulk specific gravity of the mix.

LTPP module from which G,,, was extracted
GMB SOURCE (i.e., TST).
GMM Maximum specific gravity of the mix.

LTPP module from which G,,, was extracted
GMM_SOURCE (i.e., TST).

EFFECTIVE AC

Effective asphalt content as percent of total mix
volume.

EFFECTIVE AC SOURCE

LTPP module from which V. was extracted
(i.e., TST).

MR SAMPLE DATE

Date of sampling for M.

MR 5 Resilient modulus at 5 °C (GPa).
MR 25 Resilient modulus at 25 °C (GPa).
MR 40 Resilient modulus at 40 °C (GPa).
LTPP module from which My was extracted
MR SOURCE (i.e., TST).
°C = (°F-32)/1.8
1 psi = 6.86 kPa
E.6 OUTPUT DIRECTORY

Following the File = Output Directory path will launch the output directory dialog, as seen in
figure 208. If no output directory is chosen or if users would like to change the current output
directory, they should press the browse folder button to the right of the directory path (circled in
black in figure 208). When this button is pressed, the folder selection dialog will appear (see
figure 209). Users should then navigate to the desired output folder and select the Current

Folder button (circled in black in figure 209). When selected, users return to the output directory

dialog screen. To keep the chosen directory, users should press OK to return to the main screen.
If users do not choose to keep the directory, press Cancel.
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Figure 209. Screenshot. Choosing output directory.
E.7 RUN ANALYSIS

To perform the dynamic modulus calculation, users should choose the File = Run Analysis path.
The run analysis feature will become active only after ANNACAP has received valid input
values. If an output directory has not been selected, an error message will appear, and the
analysis will not be performed. Users must select a valid output directory and follow the File 2
Run Analysis path.

If users have chosen to follow either the Mz-based ANN, |G*-based ANN, or viscosity-based
ANN, a single output file with the quantities shown in table 81 will be generated and located in
the output directory. The file name for this file will be Project ID-Project Layer-Aging Code-
Model Type-Predicted Modulus.out. If users have chosen to follow the batch mode analysis
technique, two different files will be generated: (1) a summary file with one row per layer and
(2) a detailed output data file including 30 rows per layer (one row for each temperature and
frequency combination). The summary analysis file for the batch mode will be formatted as
shown in table 82. The file name for this file will be Models Summary Batch Mode.out. The
format for the main output file will be similar to that of the individual layer analysis and is
shown in table 83. This file will be titled Predicted Modulus Batch Mode.out. Both the
summary and detailed output files will be located in the user-selected output directory. When
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running batch mode, users must rename the previous runs that are in the output directory because
ANNACAP will overwrite existing file names without any warning to the user.

Table 81. Output data format for single ANNACAP use.

Item

Description

STATE CODE

Code representing State or province as input by user

PROJECT ID

Project ID code as input by user

PROJECT LAYER

Project layer code as input by user

CONSTRUCTION DATE

Date layer was constructed as input by user

SAMPLE TYPE

I—original binder, 2-RTFO/TFO binder, 3-PAV binder, and
4—field binder

PREDICTIVE MODEL

Mpr ANN, VV- ANN, GV-|G* ANN

TEMPERATURE Temperature of modulus prediction (°F)
FREQUENCY Frequency of modulus prediction (Hz)

|E*| PREDICTION Predicted dynamic modulus (psi)

VMA Voids in mineral aggregate as percent total volume
VFA Voids filled with asphalt as percent VMA
VISCOSITY Viscosity input (10° P) only for viscosity ANN model
A Viscosity model intercept A (only for viscosity ANN model)
VTS Viscosity model slope (only for viscosity ANN model)
MR 5C Resilient modulus at 5 °C (only for Mz model) (MPa)
MR 25C Resilient modulus at 25 °C (only for My model) (MPa)
MR 40C Resilient modulus at 40 °C (only for Mz model) (MPa)
|G*| Binder shear modulus (psi) only for |G*| ANN model

WLF COEFFICIENT 1

WLF shifting function coefficient C; (only for level 1 input |G*|
ANN model)

WLF COEFFICIENT 2

WLF shifting function coefficient C, (only for level 1 input |G*|
ANN model)

CAM COEFFICIENT 1

CAM fitting coefficient Gg (only for |G*| ANN model) (Pa)

CAM_ COEFFICIENT 2

CAM fitting coefficient @, (only for |G* ANN model) (Pa)

CAM COEFFICIENT 3

CAM fitting coefficient k (only for |G*| ANN model) (Pa)

CAM_ COEFFICIENT 4

CAM fitting coefficient “me” (only for |G*| ANN model) (Pa)

SIGMOIDAL COEFFICIENT 1

Sigmoidal fitting function coefficient § (psi)

SIGMOIDAL COEFFICIENT 2

Sigmoidal fitting function coefficient ¢

SIGMOIDAL COEFFICIENT 3

Sigmoidal fitting function coefficient S

SIGMOIDAL COEFFICIENT 4

Sigmoidal fitting function coefficient y

SHIFT FACTOR COEFFICIENT 1

Shift factor fitting function coefficient ¢; (°C)

SHIFT FACTOR COEFFICIENT 2

Shift factor fitting function coefficient o, (°C)

SHIFT FACTOR COEFFICIENT 3

Shift factor fitting function coefficient 3 (°C)

SAMPLE DATE

Date that binder was sampled (only for field-aged binder)

SAMPLE AGE

Age of test sample relative to construction (days) (only for field-
aged binder)

°C =(°F-32)/1.8
1 psi = 6.86 kPa
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Table 82. Summary file format from batch mode in ANNACAP.

Item Description
STATE CODE Code representing State or province as input by user
PROJECT ID Project ID code as input by user
PROJECT LAYER Project layer code as input by user

CONSTRUCTION DATE | Date layer was constructed as input by user

I—original binder, 2-RTFO/TFO binder, 3-PAV binder, and
SAMPLE TYPE 4—field binder

Listing of models that can be used in modulus prediction with
AVAILABLE MODELS the available input data

Listing of available models for which the input data violates the
VIOLATED MODELS calibration range

Mp-resilient modulus ANN, VV-viscosity ANN, GV-|G*| ANN,
GV-PAR-|G* ANN with inconsistent aging conditions, VV-
grade, viscosity ANN with viscosity coming from binder grade,
CHOSEN MODEL *-V, * ANN model with inputs violating the input range

Table 83. Output data format for batch mode ANNACAP use.

Item Description
Unique ID combing State code, project ID and layer, sample type, and

SECTION ID model name
STATE CODE Code representing State or province as input by user
PROJECT ID Project ID code as input by user
PROJECT LAYER Project layer code as input by user
CONSTRUCTION DATE Date layer was constructed as input by user
SAMPLE TYPE 1—original binder, 2-RTFO/TFO binder, 3-PAV binder, and 4—field binder

Mp-resilient modulus ANN, VV-viscosity ANN, GV-|G* ANN, GV-PAR-
|G* ANN with inconsistent aging conditions, VV-grade, viscosity ANN with
viscosity coming from binder grade, *-V, * ANN model with inputs violating

PREDICTIVE MODEL the input range
TEMPERATURE Temperature of modulus prediction (°F)
FREQUENCY Frequency of modulus prediction (Hz)
|E*| PREDICTION Predicted dynamic modulus (psi).
Voids in mineral aggregate as percent total volume (blank for
VMA MR ANN)
VFA Voids filled with asphalt as percent VMA (only for viscosity and |G* ANN)
VISCOSITY Viscosity input (10° P) (only for viscosity ANN model)
A Viscosity model intercept A (only for viscosity ANN model)
VTS Viscosity model slope (only for viscosity ANN model)
MR 5C Resilient modulus at 5 °C (only for Mz model) (MPa)
MR 25C Resilient modulus at 25 °C (only for My model) (MPa)
MR 40C Resilient modulus at 40 °C (only for Mz model) (MPa)
|G*| Binder shear modulus (psi) only for |G* ANN model
WLF COEFFICIENT 1 WLF shifting function coefficient C; (not used in batch mode)
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WLF COEFFICIENT 2

WLF shifting function Coefficient C, (Not used in batch mode)

CAM_ COEFFICIENT 1

CAM fitting coefficient Gg (only for |G* ANN model) (Pa)

CAM COEFFICIENT 2

CAM fitting coefficient @, (only for |G* ANN model) (Pa)

CAM COEFFICIENT 3

CAM fitting coefficient k (only for |G* ANN model) (Pa)

CAM COEFFICIENT 4

CAM fitting coefficient me (only for |G* ANN model) (Pa)

SIGMOIDAL COEFFICIENT 1

Sigmoidal fitting function coefficient § (psi)

SIGMOIDAL COEFFICIENT 2

Sigmoidal fitting function coefficient ¢

SIGMOIDAL COEFFICIENT 3

Sigmoidal fitting function coefficient S

SIGMOIDAL COEFFICIENT 4

Sigmoidal fitting function coefficient y

SHIFT FACTOR COEFFICIENT 1

Shift factor fitting function coefficient o (°C)

SHIFT FACTOR_COEFFICIENT 2

Shift factor fitting function coefficient o, (°C)

SHIFT FACTOR COEFFICIENT 3

Shift factor fitting function coefficient 3 (°C)

QUALITY CONTROL #1

A—the output data passed QC #1; F—the input data did not pass QC #1

QUALITY CONTROL #2

A—the output data passed QC check 2; F—the input data did not pass QC #2

QUALITY CONTROL #3

A—the output data passed QC check 3 or QC #3 did not apply; F—the input
data did not pass QC #3

QUALITY CONTROL #4

A—the output data passed QC #4 or QC #4 did not apply; F—the input data
did not pass QC #4

QUALITY CONTROL #5

A—the output data passed QC #5; F—the input data did not pass QC #5

QUALITY CONTROL #6

A—the output data passed QC #6 or QC #6 did not apply; F—the input data
did not pass QC #6

QUALITY CONTROL #7

A—the output data passed QC #7 or QC #7 did not apply; F—the input data
did not pass QC #7

AVAILABLE MODELS

Listing of models that can be used in modulus prediction with the available
input data

VIOLATED MODELS

Listing of available models for which the input data violates the calibration
range

CHOSEN MODEL

Listing of model chosen for predicting the modulus

SAMPLE DATE

Date that binder was sampled (only for field-aged binder)

SAMPLE AGE

Age of test sample relative to construction (days) (only for field-aged binder,
blank means either SAMPLE DATE or CONSTRUCTION_ DATE were
not given)

INDIVIDUAL DATA GRADE

NCSU grade for modulus prediction; “A”—the predicted modulus is
acceptable; “C”—the predicted modulus is questionable; and “F’—the
predicted modulus may have severe problems

MASTERCURVE GRADE

b

NCSU grade for mastercurve prediction; “A”—the predicted curve is
acceptable; “C”—the predicted curve is questionable; and “F’—the
predicted curve may have severe problems

°C =(°F-32)/1.8
1 psi = 6.86 kPa
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E.8 FORM OF SUPPLEMENTARY FUNCTIONS

E.8.1 CAM Model Function

G* = G (120)
N
a)R
Where:
Wp = Reduced angular frequency.
Gg, @, k, and m, = Fitting coefficients.
w, =0*a, (121)

Where:
® = Physical angular frequency of load.
ar = Time-temperature shift factor.

E.9 TIME-TEMPERATURE SHIFT FACTOR FUNCTION FOR |G*|

E.9.1 Level 1 (WLF Function)

C(T-T
loga, = M (122)
C,+T-T,
Where:
T = Test temperature of interest.
Tr = Reference temperature (chosen as 59 °F (15 °C) for ANNACAP).
Cyand C; = WLF fitting coefficients.
E.9.2 Levels 2 and 3
For the GV ANN models not using level 1 input, the shift factor is given by the following:
E, ( | 1J+C1_TR <0
2303*R\273+T 273) C,-T,
loga = C (T-Ty,)
L S A T>0
C,+T-T, (123)
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Where:

R = 8314x 107 kJ-K ' mol™.
E, = 189.879 kJ/mol.

c, = -13.227.

C, = 90.349.

E.10 SIGMOIDAL FUNCTION

a
X — -
log|E* =6+ ) (124)
Where:
IR = The inverse of reduced frequency of loading, which is defined in the same

way as reduced angular frequency in equation 121 but with frequency in hertz
instead of radians per second.
o, a, B, and y = Fitting coefficients.

E.11 TIME-TEMPERATURE SHIFT FACTOR FUNCTION FOR |E*|

loga, =a,T* +a,T + (125)
Where:
ar = Mixture time-temperature shift factor.
T = Temperature of interest.
al, az, and g3 = Fitting coefficients.
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