


## Table of Contents

| Disclaimer                                                  |    |
|-------------------------------------------------------------|----|
| Protection of Data from Discovery Admission into Evidence   | 3  |
| Executive Summary                                           | 4  |
| Introduction                                                | 5  |
| Program Structure                                           |    |
| Program Administration                                      | 5  |
| Program Methodology                                         |    |
| Project Implementation                                      | 19 |
| Funds Programmed                                            | 19 |
| General Listing of Projects                                 | 21 |
| Safety Performance                                          | 26 |
| General Highway Safety Trends                               | 26 |
| Safety Performance Targets                                  | 31 |
| Applicability of Special Rules                              | 33 |
| Evaluation                                                  | 34 |
| Program Effectiveness                                       |    |
| Effectiveness of Groupings or Similar Types of Improvements | 34 |
| Project Effectiveness                                       |    |
| Compliance Assessment                                       |    |
| Optional Attachments                                        | 42 |
| Glossary                                                    |    |
|                                                             |    |

# Disclaimer

## Protection of Data from Discovery Admission into Evidence

23 U.S.C. 148(h)(4) states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for any purpose relating to this section[HSIP], shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location identified or addressed in the reports, surveys, schedules, lists, or other data."

23 U.S.C. 407 states "Notwithstanding any other provision of law, reports, surveys, schedules, lists, or data compiled or collected for the purpose of identifying, evaluating, or planning the safety enhancement of potential accident sites, hazardous roadway conditions, or railway-highway crossings, pursuant to sections 130, 144, and 148 of this title or for the purpose of developing any highway safety construction improvement project which may be implemented utilizing Federal-aid highway funds shall not be subject to discovery or admitted into evidence in a Federal or State court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data."

# **Executive Summary**

The Nevada Highway Safety Improvement Program (HSIP) report for 2022 summarizes the activities of the Nevada Department of Transportation's HSIP as required by Infrastructure Investment and Jobs Act (IIJA)(Public Law 117-58, also known as the "Bipartisan Infrastructure Law" (BIL)). The BIL continues the HSIP to achieve a significant reduction in traffic fatalities and serious injuries on all public roads, including non-State-owned public roads and roads on tribal lands. The HSIP requires a data-driven, strategic approach to improving highway safety on all public roads that focuses on performance regulated under Part 924 of Title 23, Code of Federal Regulations (23 CFR Part 924).

Available program funds for the purpose of this report are considered to be those funds obligated during the 2022 Federal Fiscal Year. The activities of the Nevada Department of Transportation (NDOT) are primarily designed to develop safety improvement projects for data driven improvements identified by crash data and systemic solutions, which include, but not limited to: high crash locations (intersections and roadway segments), systemic safety improvements, pedestrian related safety improvements, and rural lane departure crash mitigation.

The crash data on all public roadways contained in this report is extracted from the Nevada Citation and Accident Tracking System (NCATS) and Enforcement Mobile crash databases and prepared for NDOT Traffic Safety Engineering's analysis as a normalized view. After the crash data is downloaded from the NCATS and Enforcement Mobile databases, it is processed through geolocation software and is linearly referenced to the statewide street centerline data. The geolocation software tools automate the cleanup of location attributes and assign a spatial location to the crash data through a series of database procedures.

NDOT Traffic Safety Engineering launched a project to support all local agencies using NDOT Local Public Agency (LPA) process that helps locals access HSIP funds for data driven projects. Local agencies can support this process by working with NDOT and the FHWA to develop a Local Road Safety Plan tailored to the needs in each community.

NDOT Traffic Safety Engineering has partnered with The Timmons Group to improve the data transfer process and Crash Locating System. The crash data will be received directly from the vendor and stored in a new crash database. This new crash database will have an improved schema that will include new data fields and optimize the workflow within the section. The Timmons Group is also building a replacement to the outdated and troublesome Locator App currently used to locate crashes spatially. This new Database and Locator App will greatly reduce the time it takes to have spatial data located. This will increase the most recently available crash data to be used in analysis.

The HSIP program is administered by the NDOT Traffic Safety Engineering division. The methods used by the Traffic Safety Engineering section to identify, select, implement, and evaluate safety improvement projects have been compiled in the NDOT's HSIP Manual. A copy of the current updated NDOT HSIP Manual and other information can be found on the NDOT website at https://www.dot.nv.gov.

# Introduction

The Highway Safety Improvement Program (HSIP) is a core Federal-aid program with the purpose of achieving a significant reduction in fatalities and serious injuries on all public roads. As per 23 U.S.C. 148(h) and 23 CFR 924.15, States are required to report annually on the progress being made to advance HSIP implementation and evaluation efforts. The format of this report is consistent with the HSIP Reporting Guidance dated December 29, 2016 and consists of five sections: program structure, progress in implementing highway safety improvement projects, progress in achieving safety outcomes and performance targets, effectiveness of the improvements and compliance assessment.

# **Program Structure**

## Program Administration

### Describe the general structure of the HSIP in the State.

The HSIP program is managed by the NDOT Traffic Safety Engineering Team. The team is located in the Planning Division of NDOT.

## Where is HSIP staff located within the State DOT?

Planning

#### How are HSIP funds allocated in a State?

• SHSP Emphasis Area Data

#### Describe how local and tribal roads are addressed as part of HSIP.

NDOT Traffic Safety Engineering coordinated with Nye County and FHWA to complete Nevada's first Local Road Safety Plan (LRSP). The plan determined Emphasis Areas and identified potential Safety Projects for the county. NDOT Traffic Safety Engineering has three consultant teams to help all interested locals develop a LRSP to support Local Road Safety. The City of North Las Vegas is working with NDOT to develop a LRSP. NDOT Traffic Safety Engineering is working with other local and tribal agencies to develop LRSP for their communities.

# Identify which internal partners (e.g., State departments of transportation (DOTs) Bureaus, Divisions) are involved with HSIP planning.

- Design
- Districts/Regions
- Governors Highway Safety Office
- Maintenance
- Operations
- Planning
- Traffic Engineering/Safety

### Describe coordination with internal partners.

NDOT Traffic Safety Engineering coordinates with the NDOT Planning on a regular basis. Traffic Safety Engineering provides safety improvement guidance and review to the Planning team as projects develop. Traffic Safety Engineering recommends safety improvements for projects in the early stage of development and has supported the One Nevada Transportation Plan for prioritizing projects statewide. The One Nevada Transportation Plan for prioritizing projects statewide. The One Nevada Transportation Plan can be found at https://www.dot.nv.gov/projects-programs/road-projects/onenvplan.

NDOT Traffic Safety Engineering is frequently interacting with the NDOT Engineering Division. The Roadway Design and Project Management team are developing plans and specifications to make recommendations from recent Safety Management Plans (SMPs), RSAs, and local planning documents a reality. Engineering teams participate at all levels, ranging from preliminary field design surveys, pre-design, intermediate design, final design, and construction support.

NDOT Traffic Safety Engineering coordinates with Roadway Design to share the latest safety strategies and provide guidance for safety improvement ideas. This includes the utilization of Strategic Highway Safety Plan (SHSP) strategies, Highway Safety Manual (HSM) tools, and other federal guidelines. Traffic Safety Engineering coordinates with the Roadway Design Scoping Section to initiate and recommend safety improvements on projects during the Scoping Phase.

NDOT Traffic Safety Engineering works with the NDOT District offices to understand locations of concerns. Once the concerns are identified, Traffic Safety Engineering can support the district construction and maintenance teams as they build and maintain safe NDOT infrastructure. NDOT District Operations and Maintenance teams participate in RSAs, SMPs, and miscellaneous field inspections.

NDOT Traffic Safety Engineering collaborates with NDOT Traffic Operations when developing and implementing safety projects. Collaboration includes signal design, lighting design, operational analysis of roadway segments and intersections, and the development and discussion of safety strategies, methodologies and guidelines. Traffic Safety Engineering and Traffic Operations have partnered on the Traffic Incident Management (TIM) program and several interim approval projects with the FHWA. The TIM program has a primary goal of reducing fatalities and serious injuries from secondary crashes. Current interim approval projects include Wrong Way Driver systems with red flashing lights and Rapid Rectangular Flashing Beacon (RRFB) pedestrian crossing enhancements.

#### Identify which external partners are involved with HSIP planning.

- Academia/University
- FHWA
- Governors Highway Safety Office
- Law Enforcement Agency
- Local Government Agency
- Local Technical Assistance Program
- Regional Planning Organizations (e.g. MPOs, RPOs, COGs)
- Tribal Agency
- Other-Emergency Medical Services

#### Describe coordination with external partners.

NDOT Traffic Safety Engineering partners with the Nevada Department of Public Safety Office of Traffic Safety (DPS-OTS) on the development of the SHSP, the Critical Emphasis Areas (CEAs) identified in the SHSP, the CEA Task Force Committees, and the Zero Fatalities Initiative. DPS-OTS is NDOT Traffic Safety Engineering's primary behavioral partner. DPS-OTS serves as Nevada's Governors Highway Safety Office. The NDOT

Traffic Safety Engineering and DPS-OTS work together as defined in the SHSP. The teams share crash data and work together to ensure that safety messages reach road users in the State of Nevada. DPS-OTS and NDOT Traffic Safety share goals that are used to develop SHSP and HSIP Performance Measures.

NDOT Traffic Safety Engineering coordinates with the University of Nevada Reno (UNR) and the University of Las Vegas (UNLV) for research projects. Current projects include Traffic Data Collection and an Urban Street Lighting study. The UNLV School of Medicine maintains two (2) crash trauma databases.

NDOT Traffic Safety Engineering team partners with the FHWA. Team members share knowledge with the FHWA by attending webinars, peer-to-peers, and workshops. Traffic Safety Engineering and Traffic Operations leadership meets with the FHWA on a regular basis to discuss the HSIP, interim approval programs, and upcoming plans. The NDOT HSIP team works with the FHWA representative to ensure that any updates in HSIP procedures or best practices are shared and documented.

Representatives from Local Government Agencies partner with the HSIP team by attending the annual Safety Summit hosted by NDOT, contribute and partner with SMP's and participate as team members in the SHSP Task Forces.

NDOT Traffic Safety works with and seeks input from a variety of regional planning organizations, including, but not limited to the Southern Nevada Regional Transportation Commission (RTC), RTC of Washoe County, Carson Area Metropolitan Planning Organization (CAMPO), and Tahoe Regional Planning Authority (TRPA). These organizations are encouraged to attend the Safety Summit, contribute to SMPs, RSAs, and serve as members of SHSP Task Forces.

Representatives from Law Enforcement Agencies and Emergency Medical Services support and participate in the Nevada Safety Summit, contribute to SMPs, RSAs, and serve as members of the SHSP Task Forces and TIM Collation.

Tribal Agency projects are generated by the RSA process or through tribal planning priorities. Projects are developed and executed with tribal input.

# Describe other aspects of HSIP Administration on which the State would like to elaborate.

Nevada published the 2021-2025 SHSP in early 2021. The SHSP defines the ongoing commitments of the Nevada Safety Team. The SHSP establishes statewide goals and strategies focusing on the 6 "Es" of traffic safety: Equity, Engineering, Education, Enforcement, Emergency Medical Services/Emergency Response/Incident Management, and Everyone.

The 81st session of the Nevada Legislature created the Nevada Advisory Committee on Traffic Safety (NVACTS) with the approval of Assembly Bill No. 54 (AB54). NVACTS is the executive committee the oversees the Nevada SHSP and the Traffic Records Coordination Committee (TRCC). This bill builds on the group formally known as the Nevada Executive Committee on Traffic Safety (NECTS). NVACTS submitted their first report to the Nevada Legislature in June 2022.

The SHSP team coordinated the 2021 Nevada Traffic Safety Summit. The summit was a two-and-a-half-day event held in person at the Palace Station Hotel and Casino in Las Vegas, Nevada on October 19th, 20th, and 21st. The 2021 Summit started with workshops: Nevada Traffic Incident Management (TIM) Responder Training, Child Passenger Safety 101, Joining Forces Emotional Survival, and Crash Reconstruction: Hands on Demonstration-Mass Casualty Incident. The 2nd day kicked off with a Welcome Session followed by nine breakout sessions, which included: The Future is Now: What's New with Emerging Technologies, Impaired Driving: Navigating the Changing Landscape, Fast and Furious: Let's Talk About Speed, Traffic Safety

Communication: Listen, Learn, Action, Vulnerable Road Users: Walking and Biking to Zero Fatalities, Judicial Outreach and Communications, Safer Drivers and Passengers: Are We There Yet?, Equity: Improving Safety for Everyone, and Engineering Safer Roads. The 3rd day addressed Key Takeaways from the 2021 Nevada Legislative Session and a Legislative Panel Discussion.

The SHSP team is currently planning the 2022 Nevada Traffic Safety Summit. The Summit will be held October 19th and October 20th at the Nugget Casino Resort in Sparks, Nevada. The 2022 Summit is scheduled to be a two day, in person event.

Nevada is revitalizing it RSA program. The Covid-19 Pandemic forced changes and the department responded. NDOT Traffic Safety Engineering has hosted and completed its first virtual RSA. This virtual process included a field review and data collection by the NDOT Traffic Safety Engineering including field observations, videos of both daytime and nighttime driving views of the RSA corridor, and pictures of the major intersections. This data, coupled with crash data analysis and maps exhibiting crash severity, crash types, and driver factors for the RSA's have been created and shared with the multidisciplinary and multi-agency RSA Stakeholder Team to review prior to the virtual RSA meeting. The RSA Stakeholder Team consisted of professionals from the City of Sparks Public Works, NDOT, Nevada Highway Patrol, Regional Transportation Commission (RTC), REMSA, Truckee Meadows Fire, Washoe County, Washoe County School District-Transportation, and Washoe County School Police. Two virtual meetings were held to allow the stakeholders time to review and to submit comments. The RSA Stakeholders were encouraged to drive and observe the corridor, either virtually or in person. All comments were collected in a comment matrix and reviewed and approved by the RSA Stakeholder Team as the NDOT Traffic Safety Engineering team developed the RSA report documents and final report. This process aligns with Technical Report No. FHWA-SA-21-025 "Preparing for a Virtual Road Safety Audit (RSA)" published in December 2020.

NDOT Traffic Safety Engineering is updating the RSA database so that the RSA recommendations can be found in one central file. The database will be used as a design and planning resource for internal and external projects. The RSA database will include all current and historic RSA information and is expected to be fully populated by winter of 2022-2023.

NDOT Traffic Safety Engineering works with other NDOT teams to perform engineering studies in support of the SHSP. Current studies include "A Data-Driven Approach to Implementing Wrong-way Driving Countermeasures" where NDOT has installed red Rapid Rectangular Flashing Beacon's (RRFB's) on several off-ramps. This study is conducted under an interim agreement with the FHWA (4(09)-56 (E) - Red Rectangular Rapid Flashing Beacons on Exit Ramps – Nevada DOT). As of June 30, 2022, there has been a 78% confirmed turnaround due to installation of these devices. As part of this interim agreement, NDOT manages a multidisciplinary team led by NDOT Traffic Safety Engineering and NDOT Traffic Operations to study the effectiveness of these systems, and to submit semi-annual progress reports and a final evaluation report at the end of the experiment. The study will evaluate wrong-way driver systems that are MUTCD compliant and compare the data collected. The study has been completed and is currently in the evaluation stage.

NDOT Traffic Safety Engineering has been working with a consultant team to develop a data driven approach to identify and prioritize locations for passing and climbing lanes throughout Nevada. The prioritization is in progress with an expected completion date in the Winter of 2022. Once this is developed, Traffic Safety Engineering will work with the NDOT team to design, bid, and build these projects.

Safety Management Plans are safety focused corridor studies intended to reduce the number of crashes on Nevada roadways. The NDOT Traffic Safety Engineering team identifies corridors on arterial roads statewide to implement safety improvements. Two SMP locations have been selected in this reporting period. Locations were identified through the NDOT network screening process. The first is in Reno, Nevada on South Virginia Street from SR-431/SR-341 (Geiger Grade/Mt Rose Highway) to East Patriot Boulevard. The second is in Las Vegas, Nevada on SR-592 (East Flamingo Road) from South Paradise Road to South Pecos Road. Both

SMPs are on state-systems and are safe systems focused. SMP typically take one year to complete. The SMPs in this reporting period are expected to be completed in late 2023/early 2024. The design phase is expected to start in 2024.

SMP's evaluate the needs of all modes of transportation and make recommendations for future projects. The purpose of a SMP is to conduct a safety focused corridor study aimed at all road users and to include collaboration with stakeholders and the public. A SMP includes the development of short and long-range transportation safety improvement projects that incorporate relevant studies, access management principles, public and stakeholder input, crash and capacity analyses, benefit/cost analysis, and other impacts to all road users. A Technical Advisory Committee (TAC) is created to help with the development of the SMP and to ensure that the plan was consistent with the needs of the many different stakeholders along the project corridor. The SMP process is consistent with the Nevada SHSP goal of reducing the number of fatalities and serious injuries on Nevada's roadways. The SMP process additionally uses the Safe System Principles to produce a safety focused corridor study.

The Speed Management Action Plan (SMAP) published June 2022 characterizes Nevada's speeding-related safety problems and speed management issues; identifies appropriate engineering, enforcement, and educational countermeasures and strategies; and outlines actions that the Nevada Department of Transportation (NDOT) and partner agencies can take to implement these strategies to reduce speeding and speed-related fatal and serious injury crashes. This SMAP will facilitate coordination and cooperation among various agency stakeholders including planners, designers and managers, enforcement officials, public health practitioners, and policymakers to implement a sustainable speed management program, and to target the most cost-effective and feasible countermeasures where they will have the greatest safety benefits.

The safety goals of the SMAP are as follows:

- Reduce fatal and serious injury crashes in support of the Nevada Strategic Highway Safety Plan (SHSP)
- Incorporate the statewide speed management strategies and action items into the SHSP and track progress in the SHSP Action Tracking Tool
- Provide network screening guidance for agencies to determine areas of concern
- Improve compliance with speed limits and set target speed limits using the Countermeasures to Achieve Target Speed

Speed limit review, engineering, and design strategies, enforcement, and educational measures will be implemented through this SMAP. As mentioned, there are three basic approaches to implementation of strategies and countermeasures: proactive, comprehensive, and systematic:

- A **proactive approach** aims to foster creation of self-enforcing roadway designs appropriate to the land use and user needs (functions of the road) to reduce future speeding and injury risk. The approach aims to develop collaborative and consistent policies, procedures, and safety guidance in speed-limit setting and design for new projects and roadway improvements.
- The overarching objectives of the **comprehensive approach** are to seek community support for the program, coordinate various stakeholders and engage the community in setting and enforcing appropriate limits, and to complement and enhance the effectiveness of design and engineering measures with locally tailored communications and educational measures.
- A **systematic approach** is used to identify and coordinate treatment of existing speeding and speedrelated safety problems with cost-effective countermeasures (engineering and enforcement-related measures), and to integrate this approach with other safety plans and safety focus areas.

## Program Methodology

# Does the State have an HSIP manual or similar that clearly describes HSIP planning, implementation and evaluation processes?

Yes

NDOT Traffic Safety Engineering will systematically review this manual and update as appropriate. A full update is to be completed in FFY 2023.

#### Select the programs that are administered under the HSIP.

- HRRR
- Intersection
- Local Safety
- Pedestrian Safety
- Rural State Highways
- Segments
- Wrong Way Driving
- Other-Safety Management Plans

## Program: HRRR

#### Date of Program Methodology:10/22/2012

#### What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

#### What is the funding approach for this program?

Competes with all projects

#### What data types were used in the program methodology?

| Crashes     | Exposure | Roadway                   |
|-------------|----------|---------------------------|
| All crashes | Volume   | Functional classification |

#### What project identification methodology was used for this program?

- Crash frequency
- Crash rate

# Are local roads (non-state owned and operated) included or addressed in this program?

Yes

#### Are local road projects identified using the same methodology as state roads? Yes

#### How are projects under this program advanced for implementation?

• Other-Priority Ranking

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

#### Rank of Priority Consideration

Available funding:2 Other-Combining with other projects:3 Other-Systemic Improvements:1

# **Program: Intersection**

## Date of Program Methodology:3/9/1997

### What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

## What is the funding approach for this program?

Competes with all projects

#### What data types were used in the program methodology?

| Crashes     | Exposure | Roadway                                       |
|-------------|----------|-----------------------------------------------|
| All crashes | Volume   | <ul> <li>Functional classification</li> </ul> |

## What project identification methodology was used for this program?

- Crash rate
- Other-Societal Cost normalized by AADT

# Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

## How are projects under this program advanced for implementation?

Other-Priority Ranking

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

#### **Relative Weight in Scoring**

Available funding:30 Other-combining with other projects with our traffic safety partners:20 Other-Societal costs per volume:50 Total Relative Weight:100

## Program: Local Safety

#### Date of Program Methodology:11/4/2019

#### What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

#### What is the funding approach for this program?

Competes with all projects

#### What data types were used in the program methodology?

| Crashes     | Exposure | Roadway                                       |
|-------------|----------|-----------------------------------------------|
| All crashes | Volume   | <ul> <li>Functional classification</li> </ul> |

#### What project identification methodology was used for this program?

- Crash frequency
- Crash rate

# Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

How are projects under this program advanced for implementation?

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must

# equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

**Rank of Priority Consideration** Ranking based on B/C:50 Available funding:50

# **Program: Pedestrian Safety**

#### Date of Program Methodology:3/15/2015

#### What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

#### What is the funding approach for this program?

Funding set-aside

#### What data types were used in the program methodology?

| Crashes     | Exposure                  | Roadway                                       |
|-------------|---------------------------|-----------------------------------------------|
| All crashes | Other-Land Use Generators | <ul> <li>Functional classification</li> </ul> |

#### What project identification methodology was used for this program?

- Crash frequency
- Other-Land Use Generator Matrix (see attached)

# Are local roads (non-state owned and operated) included or addressed in this program?

Yes

## Are local road projects identified using the same methodology as state roads? Yes

#### How are projects under this program advanced for implementation?

• Other-Priority Ranking

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

#### **Relative Weight in Scoring**

Available funding:30 Other-Combining with other projects being done by our traffic safety partners:20 Other-weight from land use generator matrix:50 Total Relative Weight:100

# Program: Rural State Highways

## Date of Program Methodology:10/22/2012

## What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

## What is the funding approach for this program?

Funding set-aside

### What data types were used in the program methodology?

| Crashes     | Exposure | Roadway                                       |
|-------------|----------|-----------------------------------------------|
| All crashes | Volume   | <ul> <li>Functional classification</li> </ul> |

## What project identification methodology was used for this program?

- Crash frequency
- Crash rate

# Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

## How are projects under this program advanced for implementation?

• Other-Priority Ranking

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

#### Rank of Priority Consideration

Available funding:2 Other-Combining with other projects being done by our traffic safety partners:3

Other-Systemic Improvements:1

## **Program: Segments**

#### Date of Program Methodology:9/15/2015

#### What is the justification for this program?

- Addresses SHSP priority or emphasis area
- FHWA focused approach to safety

#### What is the funding approach for this program?

Competes with all projects

#### What data types were used in the program methodology?

| Crashes     | Exposure | Roadway                                       |
|-------------|----------|-----------------------------------------------|
| All crashes | Volume   | <ul> <li>Functional classification</li> </ul> |

#### What project identification methodology was used for this program?

- Crash rate
- Other-Societal cost per volume

# Are local roads (non-state owned and operated) included or addressed in this program?

Yes

### Are local road projects identified using the same methodology as state roads? Yes

#### How are projects under this program advanced for implementation?

• Other-Priority Ranking

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

#### **Relative Weight in Scoring**

Available funding:30 Other-Combining with other projects being done by our traffic safety partners:20 Other-Societal cost per volume:50 Total Relative Weight:100

## Program: Wrong Way Driving

### Date of Program Methodology:3/11/2020

### What is the justification for this program?

• FHWA focused approach to safety

# What is the funding approach for this program?

Competes with all projects

#### What data types were used in the program methodology?

| Crashes     | Exposure | Roadway                                       |
|-------------|----------|-----------------------------------------------|
| All crashes | Volume   | <ul> <li>Functional classification</li> </ul> |

### What project identification methodology was used for this program?

- Crash frequency
- Crash rate

# Are local roads (non-state owned and operated) included or addressed in this program?

No

Are local road projects identified using the same methodology as state roads?

#### How are projects under this program advanced for implementation?

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

Rank of Priority Consideration Available funding:50 Other-Combined with other projects:50

## Program: Other-Safety Management Plans

## Date of Program Methodology:6/15/2016

## What is the justification for this program?

• Addresses SHSP priority or emphasis area

• FHWA focused approach to safety

### What is the funding approach for this program?

Competes with all projects

#### What data types were used in the program methodology?

| Crashes     | Exposure | Roadway                   |
|-------------|----------|---------------------------|
| All crashes | Volume   | Functional classification |

### What project identification methodology was used for this program?

- Crash rate
- Other-Societal Costs normalized by ADT

# Are local roads (non-state owned and operated) included or addressed in this program?

Yes

Are local road projects identified using the same methodology as state roads? Yes

#### How are projects under this program advanced for implementation?

• Other-Priority Ranking

Select the processes used to prioritize projects for implementation. For the methods selected, indicate the relative importance of each process in project prioritization. Enter either the weights or numerical rankings. If weights are entered, the sum must equal 100. If ranks are entered, indicate ties by giving both processes the same rank and skip the next highest rank (as an example: 1, 2, 2, 4).

#### Relative Weight in Scoring

Available funding:30 Other-combining with other projects with our traffic safety partners:20 Other-Sociatal Cost per ADT:50 Total Relative Weight:100

#### What percentage of HSIP funds address systemic improvements?

0

# HSIP funds are used to address which of the following systemic improvements?

Nevada includes systemic improvements in all projects. The improvements include signage, rumble strips, safety edge, guard rail upgrades, pavement/shoulder widening, and wrong way driving treatments.

### What process is used to identify potential countermeasures?

- Crash data analysis
- Data-driven safety analysis tools (HSM, CMF Clearinghouse, SafetyAnalyst, usRAP)
- Engineering Study
- Road Safety Assessment
- SHSP/Local road safety plan
- Stakeholder input
- Other-Safety Management Plans

### Does the State HSIP consider connected vehicles and ITS technologies?

Yes

## Describe how the State HSIP considers connected vehicles and ITS technologies.

NDOT is continuously evaluating connected vehicle technologies and has participated in pilot projects focusing on V2I for winter operations and safety. We are currently transitioning from a DSRC/Cellular hybrid test corridor to a broader cellular based installation on applicable maintenance vehicles that is compatible with our upcoming AVL platform. Due to the absence of USDOT/OEM standards for connected vehicles, most of our current efforts for the public domain are focused on expanding our underlying enterprise grade communications backbone along Nevada's roadways. As part of our Smart Mobility Plan, this will provide a robust and redundant system capable is supporting a wide variety of connected technologies as they become available and are proven safe and effective. NDOT is also in the process of completing a statewide ITS and ATM Master Plan. Needs and solutions are being evaluated based on safety improvements and operational deficiencies. This process will evaluate new technology solutions as well as expanding current solutions such as Wrong Way Drivers (WWD) systems, Variable Speed Limit (VSL) corridors, wind and weather warning systems, and Advanced Traveler Information System (ATIS) devices.

# Does the State use the Highway Safety Manual to support HSIP efforts?

Yes

## Please describe how the State uses the HSM to support HSIP efforts.

The Highway Safety Manual's process for Network Screening and Project Prioritization is used to help determine the priority of HSIP projects as well as the predictive methodologies. Project safety effectiveness is calculated by Highway Safety Manual processes.

# Describe other aspects of the HSIP methodology on which the State would like to elaborate.

Nevada did not trigger the HRRR Special Rule for the reporting period but continues its efforts on rural road safety. Nevada is working on a Passing and Climbing Lane study and continues its efforts to incorporate systemic proven countermeasures such as rumble strips, curve improvements, shoulder widening, slope flattening, and passing lanes into our HSIP program.

NDOT Traffic Safety Engineering and Traffic Operations is continuing to expand the TIM program throughout the state. The primary goal of the of the TIM program is to reduce fatalities and serious injuries from secondary crashes by providing coordination and education to all partners, including enforcement, and emergency services.

# **Project Implementation**

# Funds Programmed

#### Reporting period for HSIP funding.

Federal Fiscal Year

#### Enter the programmed and obligated funding for each applicable funding category.

| FUNDING CATEGORY                                     | PROGRAMMED   | OBLIGATED    | %<br>OBLIGATED/PROGRAMMED |
|------------------------------------------------------|--------------|--------------|---------------------------|
| HSIP (23 U.S.C. 148)                                 | \$14,115,944 | \$13,725,705 | 97.24%                    |
| HRRR Special Rule (23<br>U.S.C. 148(g)(1))           | \$0          | \$0          | 0%                        |
| Penalty Funds (23 U.S.C.<br>154)                     | \$0          | \$0          | 0%                        |
| Penalty Funds (23 U.S.C.<br>164)                     | \$14,178,896 | \$14,178,896 | 100%                      |
| RHCP (for HSIP<br>purposes) (23 U.S.C.<br>130(e)(2)) | \$3,032,973  | \$0          | 0%                        |
| Other Federal-aid Funds<br>(i.e. STBG, NHPP)         | \$0          | \$0          | 0%                        |
| State and Local Funds                                | \$0          | \$0          | 0%                        |
| Totals                                               | \$31,327,813 | \$27,904,601 | 89.07%                    |

RHCP (for HSIP purposes)(23 W.S.C. 130(e)(2)) has obligations totaling (\$381,561.40) due to final vouchers from previously obligated projects. This program will not allow me to input a negative value.

Penalty Funds (23 U.S.C. 146) had a negative value of (1,577,361) which was obligated towards multiple projects. Therefore the obligations net \$0.

No RHCP funds were obligated in FFY22. Preliminary engineering for a substantial rail safety project obligated before FFY22 and two construction engineering projects is expected to bid and obligate in FFY23 and FFY24. DOT #834-498D Silver Lake Road Crossing, Reno, Washoe County, Nevada which is at 60% design stage. Construction is scheduled to obligate in FFY23 with an approximate cost of \$2,500,000.00. DOT #833-586K Highland Avenue, Reno, Washoe County, Nevada is at 30% design stage. Construction is scheduled to obligate cost of \$1,500,000.00.

# How much funding is programmed to local (non-state owned and operated) or tribal safety projects?

\$163,202

# How much funding is obligated to local or tribal safety projects? \$163,202

NDOT does not set a funding limit for local or tribal safety project. Current projects are designed and constructed by the NDOT team. NDOT is developing a LPA process for all locals to submit for HSIP funds.

\$163,202 is obligated towards Low Cost Pedestrian Improvements and Road Improvements in Wadsworth, Nevada for the Pyramid Lake Paiute Tribe

# How much funding is programmed to non-infrastructure safety projects?

How much funding is obligated to non-infrastructure safety projects? 56%

How much funding was transferred in to the HSIP from other core program areas during the reporting period under 23 U.S.C. 126? \$0

# How much funding was transferred out of the HSIP to other core program areas during the reporting period under 23 U.S.C. 126?

\$12,756,978

Funds transferred to National Highway Performance IIJA

# Discuss impediments to obligating HSIP funds and plans to overcome this challenge in the future.

The NDOT Traffic Safety Engineering team is still working though changes inspired by the Covid-19 Pandemic and staff turnover. NDOT has spent 2022 establishing the Local Road Safety Plan (LRSP) through the Local Public Agency (LPA) process. The project is in its beginning stages, and it is too premature to report on the project development. NDOT is excited to implement the project in FFY 2023 and will report on its development in the 2023 HSIP report.

# Describe any other aspects of the State's progress in implementing HSIP projects on which the State would like to elaborate.

Nevada has developed a process for funding Local Road Safety Plans (LRSP) for local and tribal agencies. With this LRSP, agencies will be able to apply for additional federal funding. A pilot project is being done with the City of North Las Vegas. Nevada is providing this opportunity to all local and tribal agencies and are using approved methods as defined in the HSIP manual to identify and pursue the state HSIP projects.

# General Listing of Projects

# List the projects obligated using HSIP funds for the reporting period.

| PROJECT NAME                                                                                                             | IMPROVEMENT<br>CATEGORY    | SUBCATEGORY                                        | OUTPUTS | OUTPUT<br>TYPE                     | HSIP<br>PROJECT<br>COST(\$) | TOTAL<br>PROJECT<br>COST(\$) | FUNDING<br>CATEGORY                 | LAND<br>USE/AREA<br>TYPE | FUNCTIONAL<br>CLASSIFICATION | AADT   | SPEED | OWNERSHIP                  |          | SHSP<br>EMPHASIS<br>AREA            | SHSP<br>STRATEGY                    |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------|---------|------------------------------------|-----------------------------|------------------------------|-------------------------------------|--------------------------|------------------------------|--------|-------|----------------------------|----------|-------------------------------------|-------------------------------------|
| DPS/OTS ROAD<br>USERS<br>BEHAVIORAL<br>CAMPAIGN FY23-24                                                                  | Miscellaneous              | Miscellaneous -<br>other                           | 0       | Statewide<br>Campaign              | \$2660000                   | \$2800000                    | HSIP (23<br>U.S.C. 148)             | Multiple/Varies          | N/A                          | 0      | 0     | Other State<br>Agency      | Systemic | All Key<br>Emphasis<br>Areas        | All Key<br>Emphasis<br>Areas        |
| UNR CATER<br>SUPPORT FOR<br>HSIP PROGRAM                                                                                 | Miscellaneous              | Data analysis                                      | 0       | Statewide                          | \$570000                    | \$600000                     | HSIP (23<br>U.S.C. 148)             | N/A                      | N/A                          | 0      | 0     | State<br>Highway<br>Agency | Systemic | Data                                | All Key<br>Emphasis<br>Areas        |
| SR 447, PYRAMID<br>LAKE PAIUTE TRIBE<br>WADSWORTH LOW<br>COST PEDESTRIAN<br>AND ROAD SAFETY<br>IMPROVEMENTS              | Pedestrians and bicyclists | Pedestrians and<br>bicyclists – other              | 0.38    | Miles                              | \$163202                    | \$171792                     | HSIP (23<br>U.S.C. 148)             | Rural                    | Local Road or<br>Street      | 840    | 25    | Indian Tribe<br>Nation     | Systemic | Pedestrians                         | Pedestrians                         |
| SR 589 FROM SR<br>595 TO I15N NB<br>RAMPS ACCESS<br>MANAGEMENT,<br>PEDESTRIAN<br>UPGRADES, AND<br>SIGNAL<br>IMPROVEMENTS |                            | Access<br>management -<br>other                    | 4       | Miles                              | \$3603573                   | \$3793264                    | HSIP (23<br>U.S.C. 148)             | Urban                    | Principal Arterial-<br>Other | 49,167 | 45    | State<br>Highway<br>Agency | Spot     | Intersections<br>and<br>Pedestrians | All Key<br>Emphasis<br>Areas        |
| SR 225 AND<br>TERMINAL WAY, MP<br>EL 27.75                                                                               | Pedestrians and bicyclists | Rapid Rectangular<br>Flashing Beacons<br>(RRFB)    | 1       | Intersections                      | \$623890                    | \$656726                     | HSIP (23<br>U.S.C. 148)             | Urban                    | Principal Arterial-<br>Other | 19,900 | 35    | State<br>Highway<br>Agency | Spot     | Intersections                       | Intersections<br>and<br>Pedestrians |
| SR 169 MP CL<br>20.670 TO MP CL<br>24.140 SHOULDER<br>WIDENING AND<br>ADD TRUCK<br>CLIMBING LANE                         | Roadway                    | Roadway widening<br>- add lane(s) along<br>segment | 3.47    | Miles                              | \$12562521                  | \$13223706                   | Penalty<br>Funds (23<br>U.S.C. 164) | Rural                    | Principal Arterial-<br>Other | 480    | 50    | State<br>Highway<br>Agency | Spot     | Roadway<br>Departure                | Lane<br>Departure                   |
| DPS-OTS<br>STATEWIDE<br>OVERSIGHT OF<br>EMS SERVICES<br>FFY18                                                            | Miscellaneous              | Miscellaneous -<br>other                           | 0       | Statewide                          | \$144726                    | \$152343                     | HSIP (23<br>U.S.C. 148)             | N/A                      | N/A                          | 0      | 0     | Other State<br>Agency      | Systemic | All Key<br>Emphasis<br>Areas        | All Key<br>Emphasis<br>Areas        |
| STATEWIDE<br>TRAFFIC INCIDENT<br>MANAGEMENT<br>SYSTEM (TIMS) FFY<br>2022-2024                                            | Miscellaneous              | Data collection                                    | 0       | Data<br>Collection<br>and Analysis | \$807500                    | \$850000                     | HSIP (23<br>U.S.C. 148)             | N/A                      | N/A                          | 0      | 0     | State<br>Highway<br>Agency | Systemic | Data                                | All Key<br>Emphasis<br>Areas        |

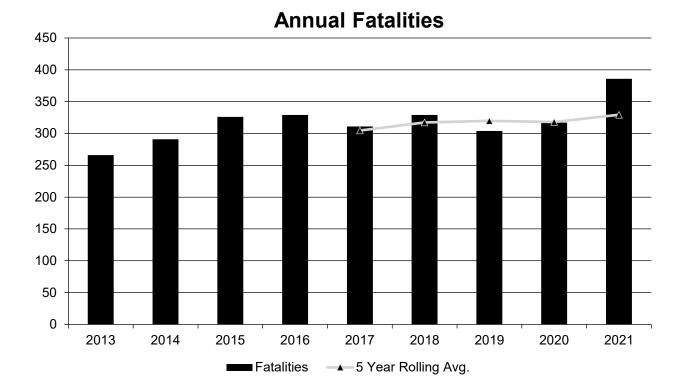
| PROJECT NAME                                                                                                               | IMPROVEMENT<br>CATEGORY         | SUBCATEGORY                                                                  | OUTPUTS | OUTPUT<br>TYPE | HSIP<br>PROJECT<br>COST(\$) | TOTAL<br>PROJECT<br>COST(\$) | FUNDING<br>CATEGORY                                        | LAND<br>USE/AREA<br>TYPE | FUNCTIONAL<br>CLASSIFICATION                           | AADT   | SPEED | OWNERSHIP                  | METHOD<br>FOR SITE<br>SELECTION | SHSP<br>EMPHASIS<br>AREA | SHSP<br>STRATEGY                    |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------|---------|----------------|-----------------------------|------------------------------|------------------------------------------------------------|--------------------------|--------------------------------------------------------|--------|-------|----------------------------|---------------------------------|--------------------------|-------------------------------------|
| US 95 MP ES 0.000<br>TO MP ES 44.196<br>WIDEN<br>SHOULDERS,<br>FLATTEN SLOPES,<br>AND ADD PASSING<br>LANES                 | Roadway                         | Roadway widening<br>- add lane(s) along<br>segment                           | 44.196  | Miles          | \$-452639                   | \$-476462                    | HSIP (23<br>U.S.C. 148)                                    | Rural                    | Principal Arterial-<br>Other Freeways &<br>Expressways | 2,583  | 70    | State<br>Highway<br>Agency | Systemic                        | Roadway<br>Departure     | Lane<br>Departure                   |
| LUCAS ROAD<br>RAILROAD<br>CROSSING INSTALL<br>CONCRETE<br>SURFACE                                                          | Railroad grade<br>crossings     | Crossing approach<br>improvements                                            | 1       | Crossing       | \$-32259                    | \$-35843                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Rural                    | Minor Arterial                                         | 380    | 35    | State<br>Highway<br>Agency | Spot                            | Intersections            | Intersections                       |
| ROBERSON LN<br>RAILROAD<br>CROSSING INSTALL<br>CONCRETE<br>SURFACE                                                         | Railroad grade<br>crossings     | Crossing approach<br>improvements                                            | 1       | Crossing       | \$-27208                    | \$-30231                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Urban                    | Local Road or<br>Street                                | 790    | 35    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossing     | Intersections                       |
| FRANKLIN WAY<br>RAILROAD<br>CROSSING                                                                                       | Railroad grade<br>crossings     | Crossing approach<br>improvements                                            | 1       | Crossing       | \$1729                      | \$-49812                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Urban                    | Local Road or<br>Street                                | 1,950  | 25    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossing     | Intersections                       |
| CRAIG RD FROM<br>DECATUR BLVD TO<br>FIFTH ST<br>PEDESTRIAN, ADA,<br>AND ROADWAY<br>IMPROVEMENTS                            | Pedestrians and bicyclists      | Pedestrians and bicyclists – other                                           | 4.1     | Miles          | \$-344839                   | \$-362988                    | HSIP (23<br>U.S.C. 148)                                    | Urban                    | Principal Arterial-<br>Other                           | 39,333 | 45    | State<br>Highway<br>Agency | Systemic                        | Pedestrians              | Pedestrians                         |
| MULTIPLE<br>INTERSECTIONS IN<br>DISTRICT 1 SIGNAL<br>SYSTEM<br>MODIFICATION                                                | Intersection<br>traffic control | Modify traffic signal<br>– add flashing<br>yellow arrow                      | 15      | Intersections  | \$-63825                    | \$-67185                     | HSIP (23<br>U.S.C. 148)                                    | Urban                    | Multiple/Varies                                        | 0      | 0     | State<br>Highway<br>Agency | Systemic                        | Intersections            | Intersections                       |
| MCCARRAN BLVD<br>FROM GREG ST TO<br>PRATER WAY<br>INTERSECTION,<br>SLIP LANES, AND<br>PEDESTRIAN<br>SAFETY<br>IMPROVEMENTS |                                 | Add/modify<br>auxiliary lanes                                                | 1.5     | Miles          | \$-293523                   | \$-308971                    | HSIP (23<br>U.S.C. 148)                                    | Urban                    | Principal Arterial-<br>Other                           | 29,150 | 45    | State<br>Highway<br>Agency | Systemic                        | Intersections            | Intersections<br>and<br>Pedestrians |
| VARIOUS<br>INTERSECTIONS IN<br>WASHOE COUNTY<br>ADD<br>RETROREFLECTIVE<br>BACKPLATES                                       | Intersection<br>traffic control | Modify traffic signal<br>– add backplates<br>with retroreflective<br>borders | 152     | Intersections  | \$-248401                   | \$-261474                    | HSIP (23<br>U.S.C. 148)                                    | Urban                    | Multiple/Varies                                        | 0      | 0     | State<br>Highway<br>Agency | Systemic                        | Intersections            | Intersections                       |

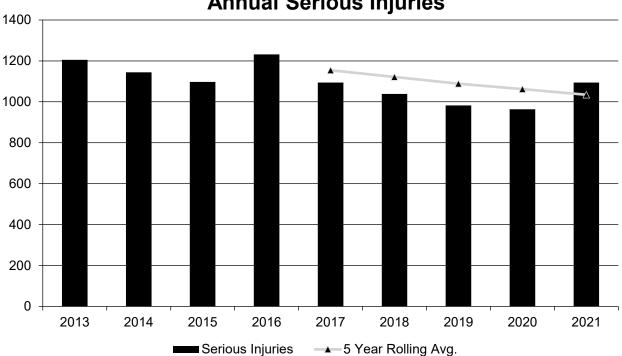
| PROJECT NAME                                                                                          | IMPROVEMENT<br>CATEGORY     | SUBCATEGORY                                                | OUTPUTS | OUTPUT<br>TYPE        | HSIP<br>PROJECT<br>COST(\$) | TOTAL<br>PROJECT<br>COST(\$) | FUNDING<br>CATEGORY                                        | LAND<br>USE/AREA<br>TYPE | FUNCTIONAL<br>CLASSIFICATION | AADT   | SPEED | OWNERSHIP                  | METHOD<br>FOR SITE<br>SELECTION | SHSP<br>EMPHASIS<br>AREA     | SHSP<br>STRATEGY             |
|-------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------|---------|-----------------------|-----------------------------|------------------------------|------------------------------------------------------------|--------------------------|------------------------------|--------|-------|----------------------------|---------------------------------|------------------------------|------------------------------|
| STATEWIDE ZERO<br>FATALITES<br>MARKETING<br>PROGRAM FFY 14-<br>17                                     | Miscellaneous               | Transportation<br>safety planning                          | 0       | Statewide             | \$-182658                   | \$-192271                    | HSIP (23<br>U.S.C. 148)                                    | N/A                      | N/A                          | 0      | 0     | Other State<br>Agency      | Systemic                        | All Key<br>Emphasis<br>Areas | All Key<br>Emphasis<br>Areas |
| PRELIMINARY<br>ENGINEERING FOR<br>CROSSING<br>SURFACE<br>IMPROVEMENTS AT<br>SIX RAILROAD<br>CROSSINGS | Railroad grade<br>crossings | Crossing approach<br>improvements                          | 6       | Crossings             | \$-5802                     | \$-6447                      | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | N/A                      | N/A                          | 0      | 0     | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossings        | Intersections                |
| FLANIGAN RD<br>RAILROAD<br>CROSSING INSTALL<br>CONCRETE<br>SURFACE                                    | Railroad grade<br>crossings | Crossing approach<br>improvements                          | 1       | Crossing              | \$-16269                    | \$-18077                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Rural                    | Minor Arterial               | 40     | 25    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossing         | Intersections                |
| SR 789 GETCHEL<br>MINE UPGRADE<br>CROSSING SIGNAL<br>SYSTEM                                           | Railroad grade<br>crossings | Active grade<br>crossing equipment<br>installation/upgrade | 1       | Crossing              | \$-11710                    | \$-13011                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Rural                    | Minor Arterial               | 580    | 55    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossing         | Intersections                |
| MITCHELL ST<br>RAILROAD<br>CROSSING INSTALL<br>CONCRETE<br>SURFACE                                    | Railroad grade<br>crossings | Crossing approach<br>improvements                          | 1       | Railroad<br>Crossing  | \$-125194                   | \$-139102                    | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Urban                    | Local Road or<br>Street      | 5,050  | 35    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossings        | Intersections                |
| ECCLES RAILROAD<br>CROSSING INSTALL<br>RAILROAD<br>CROSSING SYSTEM                                    | Railroad grade<br>crossings | Active grade<br>crossing equipment<br>installation/upgrade | 1       | Railroad<br>Crossings | \$-40280                    | \$-44755                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Rural                    | Local Road or<br>Street      | 40     | 25    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossings        | Intersections                |
| S LAS VEGAS BLVD<br>RAILROAD<br>CROSSING EXTEND<br>CONCRETE<br>CROSSING<br>SURFACE                    | Railroad grade<br>crossings | Crossing approach<br>improvements                          | 1       | Railroad<br>Crossing  | \$-58645                    | \$-65161                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Urban                    | Minor Collector              | 23,300 | 45    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossings        | Intersections                |
| UNIVERSITY OF<br>NEVADA SCHOOL<br>OF MEDICINE DATA<br>MANAGEMENT AND<br>QUALITY<br>IMPROVEMENT        | Miscellaneous               | Data collection                                            | 0       | Statewide             | \$-51131                    | \$-53823                     | HSIP (23<br>U.S.C. 148)                                    | N/A                      | N/A                          | 0      | 0     | Other State<br>Agency      | Systemic                        | Data                         | All Key<br>Emphasis<br>Areas |

| PROJECT NAME                                                                                               | IMPROVEMENT<br>CATEGORY           | SUBCATEGORY                                                | OUTPUTS | OUTPUT<br>TYPE                     | HSIP<br>PROJECT<br>COST(\$) | TOTAL<br>PROJECT<br>COST(\$) | FUNDING<br>CATEGORY                                        | LAND<br>USE/AREA<br>TYPE | FUNCTIONAL<br>CLASSIFICATION        | AADT   | SPEED | OWNERSHIP                  | METHOD<br>FOR SITE<br>SELECTION | SHSP<br>EMPHASIS<br>AREA     | SHSP<br>STRATEGY             |
|------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------|---------|------------------------------------|-----------------------------|------------------------------|------------------------------------------------------------|--------------------------|-------------------------------------|--------|-------|----------------------------|---------------------------------|------------------------------|------------------------------|
| SR 431 MP WA 0.00<br>TO MP WA 3.00, MP<br>WA 13.00 TO MP WA<br>16.00 INSTALL<br>SAFETY<br>IMPROVEMENTS     | Roadway                           | Roadway - other                                            | 6       | Miles                              | \$-120809                   | \$-127166                    | HSIP (23<br>U.S.C. 148)                                    | Urban                    | Minor Arterial 4                    | 4,150  | 45    | State<br>Highway<br>Agency | Systemic                        | Roadway<br>Departure         | Lane<br>Departure            |
| CARSON AND<br>DOUGLAS COUNTY<br>WASHOE TRIBE<br>INSTALL LOW COST<br>PEDESTRIAN AND<br>ROAD<br>IMPROVEMENTS | Pedestrians and bicyclists        | Pedestrians and<br>bicyclists – other                      | 2.34    | Miles                              | \$-65504                    | \$-68952                     | HSIP (23<br>U.S.C. 148)                                    | Urban                    | Local Road or C<br>Street           | 0      | 25    | Indian Tribe<br>Nation     | Systemic                        | Pedestrians                  | Pedestrians                  |
| LAKE TAHOE<br>REGIONAL SAFETY<br>PLAN                                                                      | Miscellaneous                     | Data analysis                                              | 0       | Statewide                          | \$-344                      | \$-362                       | HSIP (23<br>U.S.C. 148)                                    | N/A                      | N/A C                               | 0      | 0     | Other Local<br>Agency      | Systemic                        | Data                         | All Key<br>Emphasis<br>Areas |
| ARROWHEAD TRAIL<br>RAILROAD<br>CROSSING ADJUST<br>AND UPGRADE<br>SIGNAL SYSTEM                             | Railroad grade<br>crossings       | Active grade<br>crossing equipment<br>installation/upgrade | 1       | Railroad<br>Crossing               | \$-13050                    | \$-14500                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Urban                    | Local Road or 2<br>Street           | 2,450  | 25    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossing         | Intersections                |
| MULTIPLE<br>LOCATIONS IN<br>DISTRICT 2 SR 359,<br>SR 445, SR 446, SR<br>447, AND US 50                     | Roadway                           | Rumble strips –<br>edge or shoulder                        | 5       | Locations                          | \$-38357                    | \$-40372                     | HSIP (23<br>U.S.C. 148)                                    | Multiple/Varies          | Multiple/Varies 0                   | D      | 0     | State<br>Highway<br>Agency | Systemic                        | Roadway<br>Departure         | Lane<br>Departure            |
| IR 15 INSTALL<br>WRONG WAY<br>DRIVER SYSTEM AT<br>FOUR<br>INTERCHANGES                                     | Advanced<br>technology and<br>ITS | Wrong-way Driving<br>Detection System                      | 4       | Intersections                      | \$935162                    | \$984381                     | Penalty<br>Funds (23<br>U.S.C. 164)                        | Urban                    | Principal Arterial- 7<br>Interstate | 75,500 | 65    | State<br>Highway<br>Agency | Systemic                        | Intersections                | Intersections                |
| STATEWIDE<br>SAFETY ANALYST<br>SUPPORT                                                                     | Miscellaneous                     | Data collection                                            | 0       | Data<br>Collection<br>and Analysis | \$-30537                    | \$-32144                     | HSIP (23<br>U.S.C. 148)                                    | N/A                      | N/A C                               | 0      | 0     | State<br>Highway<br>Agency | Systemic                        | Data                         | Data                         |
| STATEWIDE<br>SAFETY<br>MANAGEMENT<br>PLAN FFY 2013-<br>2017                                                | Miscellaneous                     | Transportation<br>safety planning                          | 0       | Statewide                          | \$-2324406                  | \$-2446743                   | Penalty<br>Funds (23<br>U.S.C. 154)                        | N/A                      | N/A C                               | 0      | 0     | State<br>Highway<br>Agency | Systemic                        | All Key<br>Emphasis<br>Areas | All Key<br>Emphasis<br>Areas |
| YORK LANE<br>RAILROAD<br>CROSSING INSTALL<br>CONCRETE<br>SURFACE                                           | Railroad grade<br>crossings       | Crossing approach<br>improvements                          | 1       | Crossing                           | \$-22903                    | \$-25448                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Urban                    | Local Road or 7<br>Street           | 700    | 25    | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossing         | Intersections                |

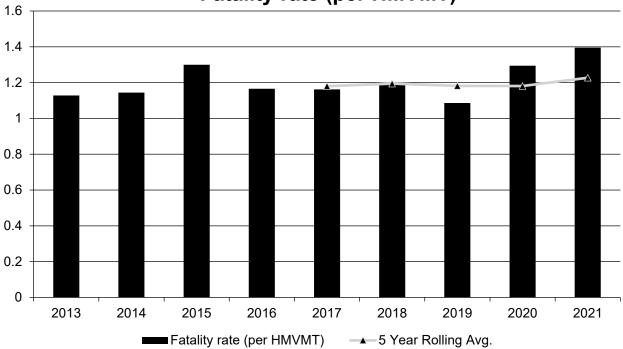
| PROJECT NAME                                                                                                         | IMPROVEMENT<br>CATEGORY           | SUBCATEGORY                                        | OUTPUTS | OUTPUT<br>TYPE                     | HSIP<br>PROJECT<br>COST(\$) | TOTAL<br>PROJECT<br>COST(\$) | FUNDING<br>CATEGORY                                        | LAND<br>USE/AREA<br>TYPE | FUNCTIONAL<br>CLASSIFICATION           | DT SPEE | OWNERSHIP                  | METHOD<br>FOR SITE<br>SELECTION | SHSP<br>EMPHASIS<br>AREA     | SHSP<br>STRATEGY             |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------|---------|------------------------------------|-----------------------------|------------------------------|------------------------------------------------------------|--------------------------|----------------------------------------|---------|----------------------------|---------------------------------|------------------------------|------------------------------|
| REGAN PLACE<br>RAILROAD<br>CROSSING INSTALL<br>CONCRETE<br>SURFACE                                                   | Railroad grade<br>crossings       | Crossing approach<br>improvements                  | 1       | Railroad<br>Crossing               | \$-29971                    | \$-33301                     | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Urban                    | Local Road or 120<br>Street            | 25      | State<br>Highway<br>Agency | Spot                            | Railroad<br>Crossing         | Intersections                |
| US 95 MP NY72.036<br>TO NY103.552<br>SHOULDER<br>WIDENING, SLOPE<br>FLATTENING, TURN<br>LANES, AND BOX<br>EXTENSIONS | Roadway                           | Roadway widening<br>- add lane(s) along<br>segment | 31.516  | Miles                              | \$5502438                   | \$5792040                    | RHCP (for<br>HSIP<br>purposes)<br>(23 U.S.C.<br>130(e)(2)) | Rural                    | Principal Arterial- 2,70<br>Other      | 00 70   | State<br>Highway<br>Agency | Systemic                        | Lane<br>Departure            | Roadway<br>Departure         |
| US 95 MP NY 28.817<br>TO NY 56.234 2<br>INCH COLDMILL<br>WITH OPEN GRADE,<br>WIDEN FOR NB AND<br>SB PASSING LANES    | Roadway                           | Roadway widening<br>- add lane(s) along<br>segment | 27.417  | Miles                              | \$1617898                   | \$1703050                    | Penalty<br>Funds (23<br>U.S.C. 164)                        | Rural                    | Principal Arterial- 2,80<br>Other      | 00 70   | State<br>Highway<br>Agency | Systemic                        | Lane<br>Departure            | Roadway<br>Departure         |
| STATEWIDE CRASH<br>DATA<br>MANAGEMENT AND<br>MAINTENANCE                                                             | Miscellaneous                     | Data collection                                    | 1       | Data<br>Analysis                   | \$47500                     | \$50000                      | HSIP (23<br>U.S.C. 148)                                    | N/A                      | N/A 0                                  | 0       | State<br>Highway<br>Agency | Systemic                        | Data                         | All Key<br>Emphasis<br>Areas |
| CRASH TRAUMA<br>DATA<br>MANAGEMENT                                                                                   | Miscellaneous                     | Data collection                                    | 1       | Data<br>Collection<br>and Analysis | \$1358965                   | \$1430490                    | HSIP (23<br>U.S.C. 148)                                    | N/A                      | N/A 0                                  | 0       | State<br>Highway<br>Agency | Systemic                        | Data                         | All Key<br>Emphasis<br>Areas |
| DEVELOPMENT OF<br>LOCAL ROAD<br>SAFETY PLANS<br>(LRSPs)                                                              | Miscellaneous                     | Transportation<br>safety planning                  | 0       | Statewide                          | \$789022                    | \$830549                     | HSIP (23<br>U.S.C. 148)                                    | N/A                      | N/A 0                                  | 0       | State<br>Highway<br>Agency | Systemic                        | All Key<br>Emphasis<br>Areas | All Key<br>Emphasis<br>Areas |
| I 580 INSTALL<br>WRONG WAY<br>DRIVER SYSTEM AT<br>FIVE<br>INTERCHANGES                                               | Advanced<br>technology and<br>ITS | Wrong-way Driving<br>Detection System              | 5       | Intersections                      | \$735176                    | \$773870                     | Penalty<br>Funds (23<br>U.S.C. 164)                        | Urban                    | Principal Arterial- 42,0<br>Interstate | 000 65  | State<br>Highway<br>Agency | Systemic                        | Intersections                | Intersections                |

SR 169 MP CL 20.670 TO MP CL 24.140 Shoulder Widening and Add Truck Climbing Lane project uses both SEC 154 Penalties-For HSIP and SEC 164 Penalties HSIP IIJA funds, in addition to HSIP IIJA and HSIP FAST funds. This project's HSIP funds in FFY22 is for \$12,562,521 with a total cost of \$13,233,706 and FFY23 HSIP funds for \$2,087,438 with a total cost of \$2,197,303. The overall total cost of this project is \$15,421,009 and the HSIP total amount is \$14,649,959.

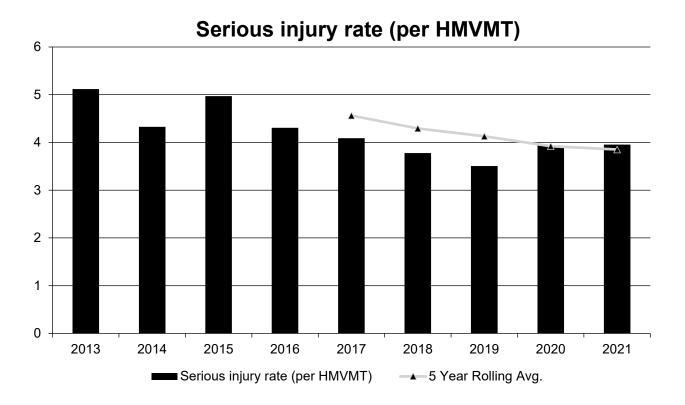

Negative values reflect NDOT fiscal closeout of older projects. These projects are included to reflect all Obligated and Programmed HSIP funds in the reporting period.

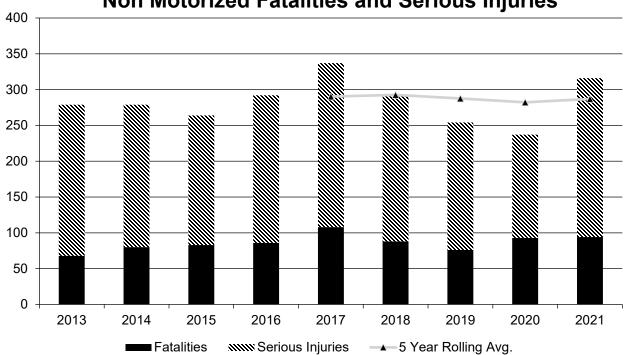

# Safety Performance

# General Highway Safety Trends


# Present data showing the general highway safety trends in the State for the past five years.

| PERFORMANCE<br>MEASURES                         | 2013  | 2014  | 2015  | 2016  | 2017  | 2018  | 2019  | 2020  | 2021  |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fatalities                                      | 266   | 291   | 326   | 329   | 311   | 329   | 304   | 317   | 386   |
| Serious Injuries                                | 1,205 | 1,144 | 1,097 | 1,232 | 1,094 | 1,039 | 982   | 964   | 1,094 |
| Fatality rate (per<br>HMVMT)                    | 1.128 | 1.144 | 1.300 | 1.166 | 1.162 | 1.196 | 1.086 | 1.294 | 1.395 |
| Serious injury rate (per<br>HMVMT)              | 5.120 | 4.328 | 4.972 | 4.306 | 4.088 | 3.777 | 3.508 | 3.934 | 3.955 |
| Number non-motorized fatalities                 | 68    | 80    | 83    | 86    | 108   | 88    | 76    | 93    | 94    |
| Number of non-<br>motorized serious<br>injuries | 211   | 199   | 181   | 206   | 229   | 203   | 178   | 144   | 222   |




# **Annual Serious Injuries**



# Fatality rate (per HMVMT)





# Non Motorized Fatalities and Serious Injuries

## **Describe fatality data source.** FARS

# To the maximum extent possible, present this data by functional classification and ownership.

| Functional<br>Classification                                             | Number of Fatalities<br>(5-yr avg) | Number of Serious<br>Injuries<br>(5-yr avg) | Fatality Rate<br>(per HMVMT)<br>(5-yr avg) | Serious Injury Rate<br>(per HMVMT)<br>(5-yr avg) |
|--------------------------------------------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------|
| Rural Principal<br>Arterial (RPA) -<br>Interstate                        | 21                                 | 30.8                                        | 0.92                                       | 1.34                                             |
| Rural Principal<br>Arterial (RPA) - Other<br>Freeways and<br>Expressways | 0                                  | 0                                           | 0                                          | 0                                                |
| Rural Principal<br>Arterial (RPA) - Other                                | 34.4                               | 48.6                                        | 2.07                                       | 2.94                                             |
| Rural Minor Arterial                                                     | 8.8                                | 15.4                                        | 2.11                                       | 3.8                                              |
| Rural Minor Collector                                                    | 2.8                                | 3                                           | 1.99                                       | 2.13                                             |
| Rural Major Collector                                                    | 8.6                                | 20                                          | 2.29                                       | 5.34                                             |

| Functional<br>Classification                                             | Number of Fatalities<br>(5-yr avg) | Number of Serious<br>Injuries<br>(5-yr avg) | Fatality Rate<br>(per HMVMT)<br>(5-yr avg) | Serious Injury Rate<br>(per HMVMT)<br>(5-yr avg) |
|--------------------------------------------------------------------------|------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------------|
| Rural Local Road or<br>Street                                            | 5                                  | 13.2                                        | 1.01                                       | 2.77                                             |
| Urban Principal<br>Arterial (UPA) -<br>Interstate                        | 23                                 | 62.6                                        | 0.52                                       | 1.4                                              |
| Urban Principal<br>Arterial (UPA) - Other<br>Freeways and<br>Expressways | 8.6                                | 28.6                                        | 0.54                                       | 1.61                                             |
| Urban Principal<br>Arterial (UPA) - Other                                | 61.6                               | 192.2                                       | 1.81                                       | 5.81                                             |
| Urban Minor Arterial                                                     | 92.2                               | 306.2                                       | 1.84                                       | 5.91                                             |
| Urban Minor Collector                                                    | 27.6                               | 104.2                                       | 1.3                                        | 4.74                                             |
| Urban Major Collector                                                    | 1.6                                | 1.6                                         | 3.03                                       | 3.49                                             |
| Urban Local Road or<br>Street                                            | 21                                 | 78.2                                        | 0.42                                       | 1.65                                             |

| Number of Fatalities<br>(5-yr avg)<br>0 | Number of Serious<br>Injuries<br>(5-yr avg) | Fatality Rate<br>(per HMVMT)<br>(5-yr avg) | Serious Injury Rate<br>(per HMVMT) |
|-----------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------|
| 0                                       |                                             |                                            | (5-yr avg)                         |
|                                         | 0                                           | 0                                          | 0                                  |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |
|                                         |                                             |                                            |                                    |

### Year 2020

## Safety Performance Targets

Safety Performance Targets

# Calendar Year 2023 Targets \*

## Number of Fatalities:347.8

Describe the basis for established target, including how it supports SHSP goals.

The target was set based on Nevada's SHSP Goal of Zero Fatalities in 2050. The number of non -motorized fatalities and serious injuries in 2022 was reduced on a straight-line basis to be 0 in 2050.

#### Number of Serious Injuries:1021.3

### Describe the basis for established target, including how it supports SHSP goals.

The target was set based on Nevada's SHSP Goal of Zero Fatalities in 2050. The number of non -motorized fatalities and serious injuries in 2022 was reduced on a straight-line basis to be 0 in 2050.

## Fatality Rate:1.279

#### Describe the basis for established target, including how it supports SHSP goals.

The target was set based on Nevada's SHSP Goal of Zero Fatalities in 2050. The number of non -motorized fatalities and serious injuries in 2022 was reduced on a straight-line basis to be 0 in 2050.

#### Serious Injury Rate:3.755

#### Describe the basis for established target, including how it supports SHSP goals.

The target was set based on Nevada's SHSP Goal of Zero Fatalities in 2050. The number of non -motorized fatalities and serious injuries in 2022 was reduced on a straight-line basis to be 0 in 2050.

#### Total Number of Non-Motorized Fatalities and Serious Injuries:262.6

#### Describe the basis for established target, including how it supports SHSP goals.

The target was set based on Nevada's SHSP Goal of Zero Fatalities in 2050. The number of non -motorized fatalities and serious injuries in 2022 was reduced on a straight-line basis to be 0 in 2050.

# Describe efforts to coordinate with other stakeholders (e.g. MPOs, SHSO) to establish safety performance targets.

Nevada is sharing its methodology with all stakeholders and will support all efforts to align with the SHSP Goal of Zero Fatalities in 2050 by reducing on a straight-line basis to be 0 in 2050.

#### Does the State want to report additional optional targets?

No

Describe progress toward meeting the State's 2022 Safety Performance Targets (based on data available at the time of reporting). For each target, include a discussion of any reasons for differences in the actual outcomes and targets.

| PERFORMANCE MEASURES       | TARGETS | ACTUALS |
|----------------------------|---------|---------|
| Number of Fatalities       | 330.2   | 329.4   |
| Number of Serious Injuries | 1154.7  | 1034.6  |

| Fatality Rate                                 | 1.226 | 1.227 |
|-----------------------------------------------|-------|-------|
| Serious Injury Rate                           | 3.835 | 3.852 |
| Non-Motorized Fatalities and Serious Injuries | 309.8 | 287.0 |

Nevada met the targets for Number of Fatalities, Number of Serious Injuries, Fatality Rate, and Non-Motorized Fatalities and Serious Injuries. Nevada did not meet the performance target for Serious Injury Rate. Serious injuries have been increasing in Nevada and across the nation. Nevada is now seeing the upward trend in these crashes in the 5-year average. NDOT is looking into every avenue to reduce serious injuries on the road network to decrease the serious injury rate.

# Applicability of Special Rules

Does the HRRR special rule apply to the State for this reporting period?  $\ensuremath{\mathsf{No}}$ 

Provide the number of older driver and pedestrian fatalities and serious injuries 65 years of age and older for the past seven years.

| PERFORMANCE<br>MEASURES                                      | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
|--------------------------------------------------------------|------|------|------|------|------|------|------|
| Number of Older Driver<br>and Pedestrian Fatalities          | 46   | 55   | 53   | 62   | 63   | 50   | 77   |
| Number of Older Driver<br>and Pedestrian Serious<br>Injuries | 110  | 130  | 129  | 115  | 124  | 140  | 101  |

# Evaluation

## **Program Effectiveness**

### How does the State measure effectiveness of the HSIP?

• Change in fatalities and serious injuries

# Based on the measures of effectiveness selected previously, describe the results of the State's program level evaluations.

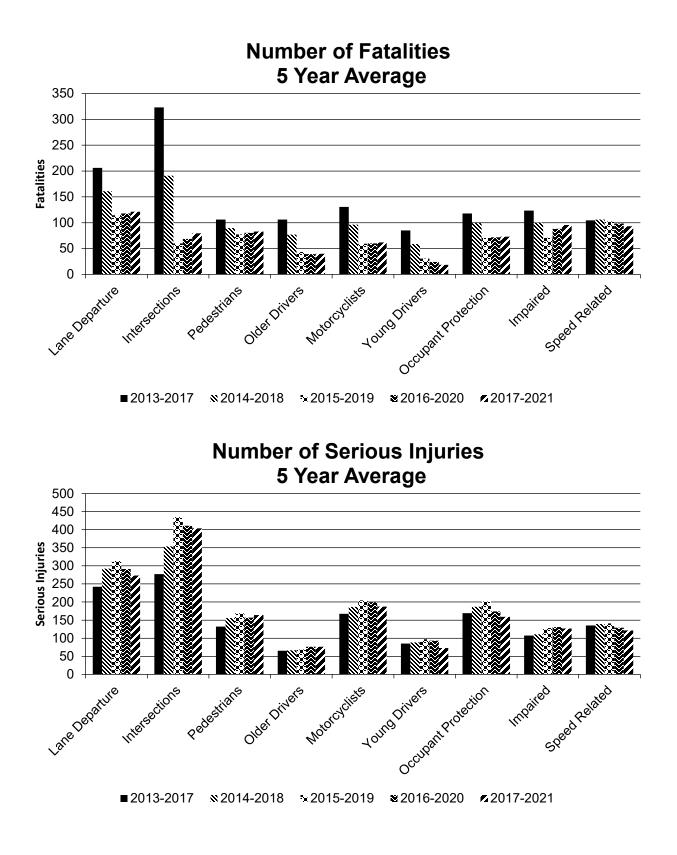
NDOT Traffic Safety Engineering focuses on developing projects that will reduce the numbers of fatalities and serious injuries. This involves using HSIP funds as outlined in the strategies and action items under the current emphasis areas outlined in the Nevada SHSP. Due to the increased rate of serious injuries on the road network, NDOT is looking into every resource available to decrease the upward trend.

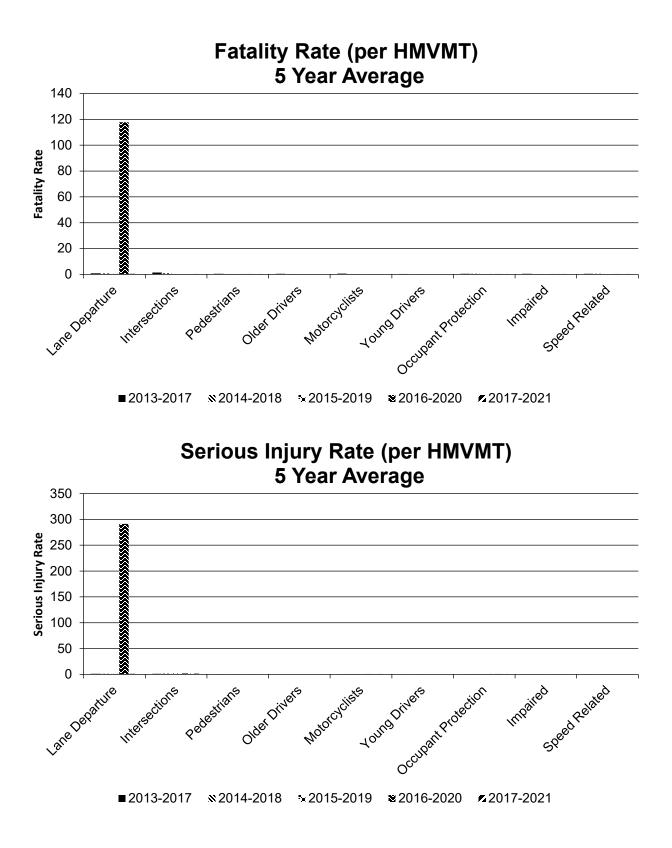
# What other indicators of success does the State use to demonstrate effectiveness and success of the Highway Safety Improvement Program?

- # miles improved by HSIP
- # RSAs completed
- HSIP Obligations
- Increased awareness of safety and data-driven process
- Increased focus on local road safety
- More systemic programs
- Policy change

# Describe significant program changes that have occurred since the last reporting period.

NDOT Traffic Safety Engineering has developed a new system for project delivery on local roadways. The FHWA approved this process on July 18, 2022. NDOT is looking forward to establishing this program and will start seeing progress in FFY 2023.


# Effectiveness of Groupings or Similar Types of Improvements


#### Present and describe trends in SHSP emphasis area performance measures.

Year 2021

| SHSP Emphasis Area | Targeted Crash<br>Type | Number of<br>Fatalities<br>(5-yr avg) | Number of<br>Serious<br>Injuries<br>(5-yr avg) | Fatality Rate<br>(per HMVMT)<br>(5-yr avg) | Serious Injury<br>Rate<br>(per HMVMT)<br>(5-yr avg) |
|--------------------|------------------------|---------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------------------|
| Lane Departure     | Run-off-road           | 121.3                                 | 273.2                                          | 0.45                                       | 1.03                                                |
| Intersections      | Intersections          | 79.6                                  | 403.67                                         | 0.3                                        | 1.5                                                 |
| Pedestrians        | Vehicle/pedestrian     | 82.9                                  | 164                                            | 0.31                                       | 0.6                                                 |

| SHSP Emphasis Area  | Targeted Crash<br>Type | Number of<br>Fatalities<br>(5-yr avg) | Number of<br>Serious<br>Injuries<br>(5-yr avg) | Fatality Rate<br>(per HMVMT)<br>(5-yr avg) | Serious Injury<br>Rate<br>(per HMVMT)<br>(5-yr avg) |
|---------------------|------------------------|---------------------------------------|------------------------------------------------|--------------------------------------------|-----------------------------------------------------|
| Older Drivers       | All                    | 39.87                                 | 76.37                                          | 0.14                                       | 0.31                                                |
| Motorcyclists       | All                    | 61.8                                  | 187.4                                          | 0.24                                       | 0.77                                                |
| Young Drivers       | All                    | 18.33                                 | 72.67                                          | 0.05                                       | 0.29                                                |
| Occupant Protection | All                    | 73.1                                  | 159                                            | 0.28                                       | 0.66                                                |
| Impaired            | All                    | 95.67                                 | 126.93                                         | 0.38                                       | 0.55                                                |
| Speed Related       | Speed-related          | 93.07                                 | 121.67                                         | 0.34                                       | 0.45                                                |





# **Project Effectiveness**

## Provide the following information for previously implemented projects that the State evaluated this reporting period.

| LOCATION                                                    | FUNCTIONAL<br>CLASS                             | IMPROVEMENT<br>CATEGORY         | IMPROVEMENT<br>TYPE                                          | PDO<br>BEFORE | PDO<br>AFTER | FATALITY<br>BEFORE | FATALITY<br>AFTER | SERIOUS<br>INJURY<br>BEFORE | SERIOUS<br>INJURY<br>AFTER | ALL OTHER<br>INJURY<br>BEFORE | ALL OTHER<br>INJURY<br>AFTER | TOTAL<br>BEFORE | TOTAL<br>AFTER | EVALUATION<br>RESULTS<br>(BENEFIT/COST<br>RATIO) |
|-------------------------------------------------------------|-------------------------------------------------|---------------------------------|--------------------------------------------------------------|---------------|--------------|--------------------|-------------------|-----------------------------|----------------------------|-------------------------------|------------------------------|-----------------|----------------|--------------------------------------------------|
|                                                             | Principal<br>Arterial (UPA) -                   | Pedestrians and bicyclists      | Pedestrians and bicyclists – other                           | 284.00        | 306.00       | 3.00               | 1.00              | 29.00                       | 9.00                       | 242.00                        | 317.00                       | 558.00          | 633.00         | 8.99                                             |
| US 93 MP CL 64<br>TO MP CL 86                               | Rural Principal<br>Arterial (RPA) -<br>Other    | Roadway                         | Roadway<br>widening - add<br>lane(s) along<br>segment        | 12.00         | 11.00        | 1.00               | 1.00              | 1.00                        | 3.00                       | 8.00                          | 7.00                         | 22.00           | 22.00          | -0.13                                            |
| SR 667 (KIETZKE<br>LANE) FROM<br>MILL ST TO<br>GALLETTI WAY | Urban<br>Principal<br>Arterial (UPA) -<br>Other | Pedestrians and<br>bicyclists   | Pedestrians and bicyclists – other                           | 30.00         | 15.00        |                    | 3.00              | 1.00                        | 2.00                       | 29.00                         | 19.00                        | 60.00           | 39.00          | -5.45                                            |
| US 395 MP DO<br>26.19, MP DO<br>27.96, MP DO<br>28.97       | Urban<br>Principal<br>Arterial (UPA) -<br>Other | Intersection<br>geometry        | Add/modify<br>auxiliary lanes                                | 26.00         | 23.00        |                    |                   | 2.00                        | 1.00                       | 10.00                         | 13.00                        | 38.00           | 37.00          | 0.07                                             |
| TE-MOAK LOW<br>COST SAFETY<br>IMPROVEMENTS<br>(SED)         | Arterial (RPA) -                                | Miscellaneous                   | Miscellaneous -<br>other                                     |               |              |                    |                   |                             |                            |                               |                              |                 |                |                                                  |
| VARIOUS<br>INTERSECTIONS<br>IN DISTRICT 2                   | Mulitple/Varies                                 | Intersection<br>traffic control | Modify traffic<br>signal – add<br>additional signal<br>heads |               |              |                    |                   |                             |                            |                               |                              |                 |                |                                                  |

The benefit (B) is calculated using Nevada's best available societal costs per crash type multiplied by the reduction in crash type. The cost (C) is total project costs. The blank areas in the spreadsheet are zeros, this question defaults and leaves them blank when you enter zero.

Both the Te-Moak Low Cost Safety Improvements and Various Intersections in District II were systemic spot improvements and not conducive to an accurate benefit/cost analysis.

•

# **Compliance Assessment**

# What date was the State's current SHSP approved by the Governor or designated State representative?

01/26/2021

## What are the years being covered by the current SHSP?

From: 2021 To: 2025

## When does the State anticipate completing it's next SHSP update?

2025

Provide the current status (percent complete) of MIRE fundamental data elements collection efforts using the table below.

| ROAD TYPE       | *MIRE NAME (MIRE                          | NON LOCAL PAVED<br>ROADS - SEGMENT |           | NON LOCAL PAVED<br>ROADS - INTERSECTION |           | NON LOCAL PAVED<br>ROADS - RAMPS |           | LOCAL PAVE | D ROADS   | UNPAVED ROADS |           |
|-----------------|-------------------------------------------|------------------------------------|-----------|-----------------------------------------|-----------|----------------------------------|-----------|------------|-----------|---------------|-----------|
|                 | NO.)                                      | STATE                              | NON-STATE | STATE                                   | NON-STATE | STATE                            | NON-STATE | STATE      | NON-STATE | STATE         | NON-STATE |
| ROADWAY SEGMENT | Segment Identifier (12) [12]              | 100                                | 100       |                                         |           |                                  |           | 100        | 100       | 100           | 100       |
|                 | Route Number (8)<br>[8]                   | 100                                | 100       |                                         |           |                                  |           |            |           |               |           |
|                 | Route/Street Name<br>(9) [9]              | 100                                | 100       |                                         |           |                                  |           |            |           |               |           |
|                 | Federal Aid/Route<br>Type (21) [21]       | 100                                | 100       |                                         |           |                                  |           |            |           |               |           |
|                 | Rural/Urban<br>Designation (20) [20]      | 100                                | 100       |                                         |           |                                  |           | 100        | 100       |               |           |
|                 | Surface Type (23)<br>[24]                 | 100                                | 100       |                                         |           |                                  |           | 15         | 100       |               |           |
|                 | BeginPointSegmentDescriptor(10) [10]      | 100                                | 100       |                                         |           |                                  |           | 100        | 100       | 100           | 100       |
|                 | End Point Segment<br>Descriptor (11) [11] | 100                                | 100       |                                         |           |                                  |           | 100        | 100       | 100           | 100       |
|                 | Segment Length<br>(13) [13]               | 100                                | 100       |                                         |           |                                  |           |            |           |               |           |
|                 | Direction of<br>Inventory (18) [18]       | 100                                | 100       |                                         |           |                                  |           |            |           |               |           |
|                 | Functional Class<br>(19) [19]             | 100                                | 100       |                                         |           |                                  |           | 100        | 100       | 100           | 100       |
|                 | Median Type (54)<br>[55]                  | 100                                | 100       |                                         |           |                                  |           |            |           |               |           |

\*Based on Functional Classification (MIRE 1.0 Element Number) [MIRE 2.0 Element Number]

| ROAD TYPE        |                                                                                    | NON LOCAL PAVED<br>ROADS - SEGMENT |           | NON LOCAL PAVED<br>ROADS - INTERSECTION |           | NON LOCAL PAVED<br>ROADS - RAMPS |           |       | ROADS     | UNPAVED ROADS |           |
|------------------|------------------------------------------------------------------------------------|------------------------------------|-----------|-----------------------------------------|-----------|----------------------------------|-----------|-------|-----------|---------------|-----------|
|                  | NO.)                                                                               | STATE                              | NON-STATE | STATE                                   | NON-STATE | STATE                            | NON-STATE | STATE | NON-STATE | STATE         | NON-STATE |
|                  | Access Control (22)<br>[23]                                                        | 100                                | 100       |                                         |           |                                  |           |       |           |               |           |
|                  | One/Two Way<br>Operations (91) [93]                                                | 100                                | 100       |                                         |           |                                  |           |       |           |               |           |
|                  | Number of Through<br>Lanes (31) [32]                                               | 100                                | 100       |                                         |           |                                  |           | 15    | 100       |               |           |
|                  | Average Annual<br>Daily Traffic (79) [81]                                          | 100                                | 100       |                                         |           |                                  |           | 15    | 100       |               |           |
|                  | AADT Year (80) [82]                                                                | 100                                | 100       |                                         |           |                                  |           |       |           |               |           |
|                  | Type of<br>Governmental<br>Ownership (4) [4]                                       | 100                                | 100       |                                         |           |                                  |           | 100   | 100       | 100           | 100       |
| INTERSECTION     | Unique Junction<br>Identifier (120) [110]                                          |                                    |           | 100                                     | 100       |                                  |           |       |           |               |           |
|                  | Location Identifier<br>for Road 1 Crossing<br>Point (122) [112]                    |                                    |           | 100                                     | 100       |                                  |           |       |           |               |           |
|                  | Location Identifier<br>for Road 2 Crossing<br>Point (123) [113]                    |                                    |           | 100                                     | 100       |                                  |           |       |           |               |           |
|                  | Intersection/Junction<br>Geometry (126)<br>[116]                                   |                                    |           |                                         |           |                                  |           |       |           |               |           |
|                  | Intersection/Junction<br>Traffic Control (131)<br>[131]                            |                                    |           | 30                                      | 30        |                                  |           |       |           |               |           |
|                  | AADT for Each<br>Intersecting Road<br>(79) [81]                                    |                                    |           | 100                                     | 100       |                                  |           |       |           |               |           |
|                  | AADT Year (80) [82]                                                                |                                    |           | 100                                     | 100       |                                  |           |       |           |               |           |
|                  | Unique Approach<br>Identifier (139) [129]                                          |                                    |           | 100                                     | 100       |                                  |           |       |           |               |           |
| INTERCHANGE/RAMP | Unique Interchange<br>Identifier (178) [168]                                       |                                    |           |                                         |           | 100                              | 100       |       |           |               |           |
|                  | Location Identifier<br>for Roadway at<br>Beginning of Ramp<br>Terminal (197) [187] |                                    |           |                                         |           | 100                              | 100       |       |           |               |           |

| ROAD TYPE           |                                                                              | NON LOCAL PAVED<br>ROADS - SEGMENT |           | NON LOCAL PAVED<br>ROADS - INTERSECTION |           | NON LOCAL PAVED<br>ROADS - RAMPS |           | LOCAL PAVED ROADS |           | UNPAVED ROADS |           |
|---------------------|------------------------------------------------------------------------------|------------------------------------|-----------|-----------------------------------------|-----------|----------------------------------|-----------|-------------------|-----------|---------------|-----------|
|                     | NO.)                                                                         | STATE                              | NON-STATE | STATE                                   | NON-STATE | STATE                            | NON-STATE | STATE             | NON-STATE | STATE         | NON-STATE |
|                     | Location Identifier<br>for Roadway at<br>Ending Ramp<br>Terminal (201) [191] |                                    |           |                                         |           | 100                              | 100       |                   |           |               |           |
|                     | Ramp Length (187)<br>[177]                                                   |                                    |           |                                         |           | 100                              | 100       |                   |           |               |           |
|                     | Roadway Type at<br>Beginning of Ramp<br>Terminal (195) [185]                 |                                    |           |                                         |           |                                  |           |                   |           |               |           |
|                     | Roadway Type at<br>End Ramp Terminal<br>(199) [189]                          |                                    |           |                                         |           |                                  |           |                   |           |               |           |
|                     | Interchange Type<br>(182) [172]                                              |                                    |           |                                         |           | 100                              | 100       |                   |           |               |           |
|                     | Ramp AADT (191)<br>[181]                                                     |                                    |           |                                         |           | 100                              | 100       |                   |           |               |           |
|                     | Year of Ramp AADT<br>(192) [182]                                             |                                    |           |                                         |           | 100                              | 100       |                   |           |               |           |
|                     | Functional Class (19) [19]                                                   |                                    |           |                                         |           | 100                              | 100       |                   |           |               |           |
|                     | Type of<br>Governmental<br>Ownership (4) [4]                                 |                                    |           |                                         |           | 100                              | 100       |                   |           |               |           |
| Totals (Average Per | cent Complete):                                                              | 100.00                             | 100.00    | 78.75                                   | 78.75     | 81.82                            | 81.82     | 71.67             | 100.00    | 100.00        | 100.00    |

\*Based on Functional Classification (MIRE 1.0 Element Number) [MIRE 2.0 Element Number]

NDOT is waiting on results from the Roadway Safety Data Program (RDIP) assessment to outline a plan for execution to complete the collection of the MIRE 2.0 Fundamental Data Elements (FDEs). RDIP results are expected Fall 2022.

## Describe actions the State will take moving forward to meet the requirement to have complete access to the MIRE fundamental data elements on all public roads by September 30, 2026.

Nevada continues to identify proactive actions to meet the MIRE Fundamental Data Elements (FDEs) deadline of September 30, 2026. Completed actions (to date) include: mapping subsequent overlap between HPMS and MIRE data elements, as well as, participation in Federal Highway Administration FDEs mapping report, the investigation of database management system to create a MIRE repository, and the collection and identification of safety gaps not addressed by MIRE, State, or Federal guidance. Data extraction from the Road Video Lidar system is underway, and once completed, data will be utilized in safety tools and/or other tools. Lastly, evaluation shall include Highway Safety Improvement Program quality control, ensuring the accuracy of safety data. Nevada held a Roadway Data Improvement Program (RDIP) workshop on May 3, 2022 and May 4, 2022. Nevada is waiting on the assessment to proceed with a strategic plan to collect the MIRE data elements.

# **Optional Attachments**

Program Structure:

HSIP Procedure Manual July 2020.pdf Project Implementation:

Safety Performance:

Evaluation:

Compliance Assessment:

# Glossary

**5 year rolling average:** means the average of five individuals, consecutive annual points of data (e.g. annual fatality rate).

**Emphasis area:** means a highway safety priority in a State's SHSP, identified through a data-driven, collaborative process.

**Highway safety improvement project:** means strategies, activities and projects on a public road that are consistent with a State strategic highway safety plan and corrects or improves a hazardous road location or feature or addresses a highway safety problem.

HMVMT: means hundred million vehicle miles traveled.

**Non-infrastructure projects:** are projects that do not result in construction. Examples of non-infrastructure projects include road safety audits, transportation safety planning activities, improvements in the collection and analysis of data, education and outreach, and enforcement activities.

**Older driver special rule:** applies if traffic fatalities and serious injuries per capita for drivers and pedestrians over the age of 65 in a State increases during the most recent 2-year period for which data are available, as defined in the Older Driver and Pedestrian Special Rule Interim Guidance dated February 13, 2013.

**Performance measure:** means indicators that enable decision-makers and other stakeholders to monitor changes in system condition and performance against established visions, goals, and objectives.

**Programmed funds:** mean those funds that have been programmed in the Statewide Transportation Improvement Program (STIP) to be expended on highway safety improvement projects.

**Roadway Functional Classification:** means the process by which streets and highways are grouped into classes, or systems, according to the character of service they are intended to provide.

**Strategic Highway Safety Plan (SHSP):** means a comprehensive, multi-disciplinary plan, based on safety data developed by a State Department of Transportation in accordance with 23 U.S.C. 148.

**Systematic:** refers to an approach where an agency deploys countermeasures at all locations across a system.

**Systemic safety improvement:** means an improvement that is widely implemented based on high risk roadway features that are correlated with specific severe crash types.

**Transfer:** means, in accordance with provisions of 23 U.S.C. 126, a State may transfer from an apportionment under section 104(b) not to exceed 50 percent of the amount apportioned for the fiscal year to any other apportionment of the State under that section.