

Designing a Safer System for Pedestrians

Methods to reduce fatalities are well-known

Source: Hierarchy of Controls adapted from the 2019 Washington State Strategic Highway Safety Plan and the 2017 National Institute for Occupational Safety and Health.

Safe System approaches involve limiting opportunities for exposure to a crash

Less of this...

And more of this...

Predictability (of bike traffic)

Forgiveness (buffer)

Restrictiveness (turning movements)

Simplicity (color)

Separation (of modes)

Speed control

Source: www.pedbikeimages.org.

Managing speed manages both risk of a crash and injury severity

Higher Vehicle Speeds Require Longer Stopping Times

Note: Above distances are typical distances. The total stoppoing distance also depends on the thinking distance, road surface, weather conditions and age/condition of the vehicle.

Source: Cities Safer by Design (2015) wri.org/publication/cities-safer-design

Many energy transfer management tools exist

Speed control

- Road diets, traffic calming
- Speed governors on vehicles and automatic emergency braking
- Speed feedback signs

Speed harmonization

- Slow speed zones / speed limit reductions
- Access management

Safe System = Proactive approaches to manage risks system-wide

Source: Thomas, Sandt, et al. NCHRP Report 893.

Source: Arizona Department of Transportation: Preliminary Identification of High-Risk Segments (2017).

Thank you!

Laura Sandt, PhD sandt@hsrc.unc.edu

@pedbikeinfo

